MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 27080
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 27077 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11182 . . . 4 class
4 cz 12639 . . . . 5 class
5 cn 12293 . . . . 5 class
64, 5cdif 3973 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3973 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1536 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1536 . . . . . . . . . 10 class 𝑚
11 c1 11185 . . . . . . . . . 10 class 1
12 caddc 11187 . . . . . . . . . 10 class +
1310, 11, 12co 7448 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11947 . . . . . . . . 9 class /
1513, 10, 14co 7448 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26614 . . . . . . . 8 class log
1715, 16cfv 6573 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11189 . . . . . . 7 class ·
198, 17, 18co 7448 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7448 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7448 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6573 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11520 . . . . . 6 class
2419, 22, 23co 7448 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15734 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6573 . . . 4 class (log‘𝑧)
2725, 26, 23co 7448 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5249 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1537 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  27097  lgamf  27103  iprodgam  35704
  Copyright terms: Public domain W3C validator