MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26929
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26926 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11066 . . . 4 class
4 cz 12529 . . . . 5 class
5 cn 12186 . . . . 5 class
64, 5cdif 3911 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3911 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1539 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1539 . . . . . . . . . 10 class 𝑚
11 c1 11069 . . . . . . . . . 10 class 1
12 caddc 11071 . . . . . . . . . 10 class +
1310, 11, 12co 7387 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11835 . . . . . . . . 9 class /
1513, 10, 14co 7387 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26463 . . . . . . . 8 class log
1715, 16cfv 6511 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11073 . . . . . . 7 class ·
198, 17, 18co 7387 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7387 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7387 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6511 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11405 . . . . . 6 class
2419, 22, 23co 7387 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15652 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6511 . . . 4 class (log‘𝑧)
2725, 26, 23co 7387 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5188 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1540 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26946  lgamf  26952  iprodgam  35729
  Copyright terms: Public domain W3C validator