MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26981
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26978 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11127 . . . 4 class
4 cz 12588 . . . . 5 class
5 cn 12240 . . . . 5 class
64, 5cdif 3923 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3923 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1539 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1539 . . . . . . . . . 10 class 𝑚
11 c1 11130 . . . . . . . . . 10 class 1
12 caddc 11132 . . . . . . . . . 10 class +
1310, 11, 12co 7405 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11894 . . . . . . . . 9 class /
1513, 10, 14co 7405 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26515 . . . . . . . 8 class log
1715, 16cfv 6531 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11134 . . . . . . 7 class ·
198, 17, 18co 7405 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7405 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7405 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6531 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11466 . . . . . 6 class
2419, 22, 23co 7405 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15702 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6531 . . . 4 class (log‘𝑧)
2725, 26, 23co 7405 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5201 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1540 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26998  lgamf  27004  iprodgam  35759
  Copyright terms: Public domain W3C validator