MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26905
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26902 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11042 . . . 4 class
4 cz 12505 . . . . 5 class
5 cn 12162 . . . . 5 class
64, 5cdif 3908 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3908 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1539 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1539 . . . . . . . . . 10 class 𝑚
11 c1 11045 . . . . . . . . . 10 class 1
12 caddc 11047 . . . . . . . . . 10 class +
1310, 11, 12co 7369 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11811 . . . . . . . . 9 class /
1513, 10, 14co 7369 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26439 . . . . . . . 8 class log
1715, 16cfv 6499 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11049 . . . . . . 7 class ·
198, 17, 18co 7369 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7369 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7369 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6499 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11381 . . . . . 6 class
2419, 22, 23co 7369 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15628 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6499 . . . 4 class (log‘𝑧)
2725, 26, 23co 7369 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5183 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1540 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26922  lgamf  26928  iprodgam  35702
  Copyright terms: Public domain W3C validator