MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26936
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26933 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11073 . . . 4 class
4 cz 12536 . . . . 5 class
5 cn 12193 . . . . 5 class
64, 5cdif 3914 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3914 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1539 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1539 . . . . . . . . . 10 class 𝑚
11 c1 11076 . . . . . . . . . 10 class 1
12 caddc 11078 . . . . . . . . . 10 class +
1310, 11, 12co 7390 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11842 . . . . . . . . 9 class /
1513, 10, 14co 7390 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26470 . . . . . . . 8 class log
1715, 16cfv 6514 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11080 . . . . . . 7 class ·
198, 17, 18co 7390 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7390 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7390 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6514 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11412 . . . . . 6 class
2419, 22, 23co 7390 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15659 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6514 . . . 4 class (log‘𝑧)
2725, 26, 23co 7390 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5191 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1540 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26953  lgamf  26959  iprodgam  35736
  Copyright terms: Public domain W3C validator