MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26956
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26953 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11004 . . . 4 class
4 cz 12468 . . . . 5 class
5 cn 12125 . . . . 5 class
64, 5cdif 3894 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3894 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1540 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1540 . . . . . . . . . 10 class 𝑚
11 c1 11007 . . . . . . . . . 10 class 1
12 caddc 11009 . . . . . . . . . 10 class +
1310, 11, 12co 7346 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11774 . . . . . . . . 9 class /
1513, 10, 14co 7346 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26490 . . . . . . . 8 class log
1715, 16cfv 6481 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11011 . . . . . . 7 class ·
198, 17, 18co 7346 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7346 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7346 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6481 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11344 . . . . . 6 class
2419, 22, 23co 7346 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15593 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6481 . . . 4 class (log‘𝑧)
2725, 26, 23co 7346 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5170 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1541 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26973  lgamf  26979  iprodgam  35786
  Copyright terms: Public domain W3C validator