MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26927
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26924 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 11007 . . . 4 class
4 cz 12471 . . . . 5 class
5 cn 12128 . . . . 5 class
64, 5cdif 3900 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3900 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1539 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1539 . . . . . . . . . 10 class 𝑚
11 c1 11010 . . . . . . . . . 10 class 1
12 caddc 11012 . . . . . . . . . 10 class +
1310, 11, 12co 7349 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11777 . . . . . . . . 9 class /
1513, 10, 14co 7349 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 26461 . . . . . . . 8 class log
1715, 16cfv 6482 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 11014 . . . . . . 7 class ·
198, 17, 18co 7349 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7349 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7349 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6482 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11347 . . . . . 6 class
2419, 22, 23co 7349 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15593 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6482 . . . 4 class (log‘𝑧)
2725, 26, 23co 7349 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5173 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1540 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26944  lgamf  26950  iprodgam  35715
  Copyright terms: Public domain W3C validator