Detailed syntax breakdown of Definition df-lgam
Step | Hyp | Ref
| Expression |
1 | | clgam 26070 |
. 2
class log
Γ |
2 | | vz |
. . 3
setvar 𝑧 |
3 | | cc 10800 |
. . . 4
class
ℂ |
4 | | cz 12249 |
. . . . 5
class
ℤ |
5 | | cn 11903 |
. . . . 5
class
ℕ |
6 | 4, 5 | cdif 3880 |
. . . 4
class (ℤ
∖ ℕ) |
7 | 3, 6 | cdif 3880 |
. . 3
class (ℂ
∖ (ℤ ∖ ℕ)) |
8 | 2 | cv 1538 |
. . . . . . 7
class 𝑧 |
9 | | vm |
. . . . . . . . . . 11
setvar 𝑚 |
10 | 9 | cv 1538 |
. . . . . . . . . 10
class 𝑚 |
11 | | c1 10803 |
. . . . . . . . . 10
class
1 |
12 | | caddc 10805 |
. . . . . . . . . 10
class
+ |
13 | 10, 11, 12 | co 7255 |
. . . . . . . . 9
class (𝑚 + 1) |
14 | | cdiv 11562 |
. . . . . . . . 9
class
/ |
15 | 13, 10, 14 | co 7255 |
. . . . . . . 8
class ((𝑚 + 1) / 𝑚) |
16 | | clog 25615 |
. . . . . . . 8
class
log |
17 | 15, 16 | cfv 6418 |
. . . . . . 7
class
(log‘((𝑚 + 1)
/ 𝑚)) |
18 | | cmul 10807 |
. . . . . . 7
class
· |
19 | 8, 17, 18 | co 7255 |
. . . . . 6
class (𝑧 · (log‘((𝑚 + 1) / 𝑚))) |
20 | 8, 10, 14 | co 7255 |
. . . . . . . 8
class (𝑧 / 𝑚) |
21 | 20, 11, 12 | co 7255 |
. . . . . . 7
class ((𝑧 / 𝑚) + 1) |
22 | 21, 16 | cfv 6418 |
. . . . . 6
class
(log‘((𝑧 /
𝑚) + 1)) |
23 | | cmin 11135 |
. . . . . 6
class
− |
24 | 19, 22, 23 | co 7255 |
. . . . 5
class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) |
25 | 5, 24, 9 | csu 15325 |
. . . 4
class
Σ𝑚 ∈
ℕ ((𝑧 ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) |
26 | 8, 16 | cfv 6418 |
. . . 4
class
(log‘𝑧) |
27 | 25, 26, 23 | co 7255 |
. . 3
class
(Σ𝑚 ∈
ℕ ((𝑧 ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)) |
28 | 2, 7, 27 | cmpt 5153 |
. 2
class (𝑧 ∈ (ℂ ∖
(ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) |
29 | 1, 28 | wceq 1539 |
1
wff log Γ
= (𝑧 ∈ (ℂ
∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) |