MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26073
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26070 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 10800 . . . 4 class
4 cz 12249 . . . . 5 class
5 cn 11903 . . . . 5 class
64, 5cdif 3880 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3880 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1538 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1538 . . . . . . . . . 10 class 𝑚
11 c1 10803 . . . . . . . . . 10 class 1
12 caddc 10805 . . . . . . . . . 10 class +
1310, 11, 12co 7255 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11562 . . . . . . . . 9 class /
1513, 10, 14co 7255 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 25615 . . . . . . . 8 class log
1715, 16cfv 6418 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 10807 . . . . . . 7 class ·
198, 17, 18co 7255 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7255 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7255 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6418 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11135 . . . . . 6 class
2419, 22, 23co 7255 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15325 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6418 . . . 4 class (log‘𝑧)
2725, 26, 23co 7255 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5153 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1539 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26090  lgamf  26096  iprodgam  33614
  Copyright terms: Public domain W3C validator