MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Visualization version   GIF version

Definition df-lgam 26168
Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Distinct variable group:   𝑧,𝑚

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 26165 . 2 class log Γ
2 vz . . 3 setvar 𝑧
3 cc 10869 . . . 4 class
4 cz 12319 . . . . 5 class
5 cn 11973 . . . . 5 class
64, 5cdif 3884 . . . 4 class (ℤ ∖ ℕ)
73, 6cdif 3884 . . 3 class (ℂ ∖ (ℤ ∖ ℕ))
82cv 1538 . . . . . . 7 class 𝑧
9 vm . . . . . . . . . . 11 setvar 𝑚
109cv 1538 . . . . . . . . . 10 class 𝑚
11 c1 10872 . . . . . . . . . 10 class 1
12 caddc 10874 . . . . . . . . . 10 class +
1310, 11, 12co 7275 . . . . . . . . 9 class (𝑚 + 1)
14 cdiv 11632 . . . . . . . . 9 class /
1513, 10, 14co 7275 . . . . . . . 8 class ((𝑚 + 1) / 𝑚)
16 clog 25710 . . . . . . . 8 class log
1715, 16cfv 6433 . . . . . . 7 class (log‘((𝑚 + 1) / 𝑚))
18 cmul 10876 . . . . . . 7 class ·
198, 17, 18co 7275 . . . . . 6 class (𝑧 · (log‘((𝑚 + 1) / 𝑚)))
208, 10, 14co 7275 . . . . . . . 8 class (𝑧 / 𝑚)
2120, 11, 12co 7275 . . . . . . 7 class ((𝑧 / 𝑚) + 1)
2221, 16cfv 6433 . . . . . 6 class (log‘((𝑧 / 𝑚) + 1))
23 cmin 11205 . . . . . 6 class
2419, 22, 23co 7275 . . . . 5 class ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
255, 24, 9csu 15397 . . . 4 class Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))
268, 16cfv 6433 . . . 4 class (log‘𝑧)
2725, 26, 23co 7275 . . 3 class 𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))
282, 7, 27cmpt 5157 . 2 class (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
291, 28wceq 1539 1 wff log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  lgamgulm2  26185  lgamf  26191  iprodgam  33708
  Copyright terms: Public domain W3C validator