![]() |
Metamath
Proof Explorer Theorem List (p. 266 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30435) |
![]() (30436-31958) |
![]() (31959-47941) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | logrec 26501 | Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.) |
β’ ((π΄ β β β§ π΄ β 0 β§ (ββ(logβπ΄)) β Ο) β (logβπ΄) = -(logβ(1 / π΄))) | ||
Define "log using an arbitrary base" function and then prove some of its properties. Note that logb is generalized to an arbitrary base and arbitrary parameter in β, but it doesn't accept infinities as arguments, unlike log. Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log". There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (π΅ logb π) where π΅ is the base and π is the argument of the logarithm function. An alternative would be to support the notational form (( logb βπ΅)βπ); that looks a little more like traditional notation. Such a function ( logb βπ΅) for a fixed base can be obtained in Metamath (without the need for a new definition) by the curry function: (curry logb βπ΅), see logbmpt 26526, logbf 26527 and logbfval 26528. | ||
Syntax | clogb 26502 | Extend class notation to include the logarithm generalized to an arbitrary base. |
class logb | ||
Definition | df-logb 26503* | Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (π΅ logb π) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017.) |
β’ logb = (π₯ β (β β {0, 1}), π¦ β (β β {0}) β¦ ((logβπ¦) / (logβπ₯))) | ||
Theorem | logbval 26504 | Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
β’ ((π΅ β (β β {0, 1}) β§ π β (β β {0})) β (π΅ logb π) = ((logβπ) / (logβπ΅))) | ||
Theorem | logbcl 26505 | General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.) |
β’ ((π΅ β (β β {0, 1}) β§ π β (β β {0})) β (π΅ logb π) β β) | ||
Theorem | logbid1 26506 | General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.) |
β’ ((π΄ β β β§ π΄ β 0 β§ π΄ β 1) β (π΄ logb π΄) = 1) | ||
Theorem | logb1 26507 | The logarithm of 1 to an arbitrary base π΅ is 0. Property 1(b) of [Cohen4] p. 361. See log1 26327. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
β’ ((π΅ β β β§ π΅ β 0 β§ π΅ β 1) β (π΅ logb 1) = 0) | ||
Theorem | elogb 26508 | The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using e as the base in logb is the same as log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.) |
β’ (π΄ β (β β {0}) β (e logb π΄) = (logβπ΄)) | ||
Theorem | logbchbase 26509 | Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.) |
β’ (((π΄ β β β§ π΄ β 0 β§ π΄ β 1) β§ (π΅ β β β§ π΅ β 0 β§ π΅ β 1) β§ π β (β β {0})) β (π΄ logb π) = ((π΅ logb π) / (π΅ logb π΄))) | ||
Theorem | relogbval 26510 | Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
β’ ((π΅ β (β€β₯β2) β§ π β β+) β (π΅ logb π) = ((logβπ) / (logβπ΅))) | ||
Theorem | relogbcl 26511 | Closure of the general logarithm with a positive real base on positive reals. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
β’ ((π΅ β β+ β§ π β β+ β§ π΅ β 1) β (π΅ logb π) β β) | ||
Theorem | relogbzcl 26512 | Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.) |
β’ ((π΅ β (β€β₯β2) β§ π β β+) β (π΅ logb π) β β) | ||
Theorem | relogbreexp 26513 | Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.) |
β’ ((π΅ β (β β {0, 1}) β§ πΆ β β+ β§ πΈ β β) β (π΅ logb (πΆβππΈ)) = (πΈ Β· (π΅ logb πΆ))) | ||
Theorem | relogbzexp 26514 | Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
β’ ((π΅ β (β β {0, 1}) β§ πΆ β β+ β§ π β β€) β (π΅ logb (πΆβπ)) = (π Β· (π΅ logb πΆ))) | ||
Theorem | relogbmul 26515 | The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.) |
β’ ((π΅ β (β β {0, 1}) β§ (π΄ β β+ β§ πΆ β β+)) β (π΅ logb (π΄ Β· πΆ)) = ((π΅ logb π΄) + (π΅ logb πΆ))) | ||
Theorem | relogbmulexp 26516 | The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.) |
β’ ((π΅ β (β β {0, 1}) β§ (π΄ β β+ β§ πΆ β β+ β§ πΈ β β)) β (π΅ logb (π΄ Β· (πΆβππΈ))) = ((π΅ logb π΄) + (πΈ Β· (π΅ logb πΆ)))) | ||
Theorem | relogbdiv 26517 | The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.) |
β’ ((π΅ β (β β {0, 1}) β§ (π΄ β β+ β§ πΆ β β+)) β (π΅ logb (π΄ / πΆ)) = ((π΅ logb π΄) β (π΅ logb πΆ))) | ||
Theorem | relogbexp 26518 | Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
β’ ((π΅ β β+ β§ π΅ β 1 β§ π β β€) β (π΅ logb (π΅βπ)) = π) | ||
Theorem | nnlogbexp 26519 | Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
β’ ((π΅ β (β€β₯β2) β§ π β β€) β (π΅ logb (π΅βπ)) = π) | ||
Theorem | logbrec 26520 | Logarithm of a reciprocal changes sign. See logrec 26501. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
β’ ((π΅ β (β€β₯β2) β§ π΄ β β+) β (π΅ logb (1 / π΄)) = -(π΅ logb π΄)) | ||
Theorem | logbleb 26521 | The general logarithm function is monotone/increasing. See logleb 26344. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.) |
β’ ((π΅ β (β€β₯β2) β§ π β β+ β§ π β β+) β (π β€ π β (π΅ logb π) β€ (π΅ logb π))) | ||
Theorem | logblt 26522 | The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 26341. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
β’ ((π΅ β (β€β₯β2) β§ π β β+ β§ π β β+) β (π < π β (π΅ logb π) < (π΅ logb π))) | ||
Theorem | relogbcxp 26523 | Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.) |
β’ ((π΅ β (β+ β {1}) β§ π β β) β (π΅ logb (π΅βππ)) = π) | ||
Theorem | cxplogb 26524 | Identity law for the general logarithm. (Contributed by AV, 22-May-2020.) |
β’ ((π΅ β (β β {0, 1}) β§ π β (β β {0})) β (π΅βπ(π΅ logb π)) = π) | ||
Theorem | relogbcxpb 26525 | The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.) |
β’ (((π΅ β β+ β§ π΅ β 1) β§ π β β+ β§ π β β) β ((π΅ logb π) = π β (π΅βππ) = π)) | ||
Theorem | logbmpt 26526* | The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.) |
β’ ((π΅ β β β§ π΅ β 0 β§ π΅ β 1) β (curry logb βπ΅) = (π¦ β (β β {0}) β¦ ((logβπ¦) / (logβπ΅)))) | ||
Theorem | logbf 26527 | The general logarithm to a fixed base regarded as function. (Contributed by AV, 11-Jun-2020.) |
β’ ((π΅ β β β§ π΅ β 0 β§ π΅ β 1) β (curry logb βπ΅):(β β {0})βΆβ) | ||
Theorem | logbfval 26528 | The general logarithm of a complex number to a fixed base. (Contributed by AV, 11-Jun-2020.) |
β’ (((π΅ β β β§ π΅ β 0 β§ π΅ β 1) β§ π β (β β {0})) β ((curry logb βπ΅)βπ) = (π΅ logb π)) | ||
Theorem | relogbf 26529 | The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in [Cohen4] p. 349. (Contributed by AV, 12-Jun-2020.) |
β’ ((π΅ β β+ β§ 1 < π΅) β ((curry logb βπ΅) βΎ β+):β+βΆβ) | ||
Theorem | logblog 26530 | The general logarithm to the base being Euler's constant regarded as function is the natural logarithm. (Contributed by AV, 12-Jun-2020.) |
β’ (curry logb βe) = log | ||
Theorem | logbgt0b 26531 | The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.) |
β’ ((π΄ β β+ β§ (π΅ β β+ β§ 1 < π΅)) β (0 < (π΅ logb π΄) β 1 < π΄)) | ||
Theorem | logbgcd1irr 26532 | The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) β (β β β) (see 2logb9irr 26533). (Contributed by AV, 29-Dec-2022.) |
β’ ((π β (β€β₯β2) β§ π΅ β (β€β₯β2) β§ (π gcd π΅) = 1) β (π΅ logb π) β (β β β)) | ||
Theorem | 2logb9irr 26533 | Example for logbgcd1irr 26532. The logarithm of nine to base two is irrational. (Contributed by AV, 29-Dec-2022.) |
β’ (2 logb 9) β (β β β) | ||
Theorem | logbprmirr 26534 | The logarithm of a prime to a different prime base is an irrational number. For example, (2 logb 3) β (β β β) (see 2logb3irr 26535). (Contributed by AV, 31-Dec-2022.) |
β’ ((π β β β§ π΅ β β β§ π β π΅) β (π΅ logb π) β (β β β)) | ||
Theorem | 2logb3irr 26535 | Example for logbprmirr 26534. The logarithm of three to base two is irrational. (Contributed by AV, 31-Dec-2022.) |
β’ (2 logb 3) β (β β β) | ||
Theorem | 2logb9irrALT 26536 | Alternate proof of 2logb9irr 26533: The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (2 logb 9) β (β β β) | ||
Theorem | sqrt2cxp2logb9e3 26537 | The square root of two to the power of the logarithm of nine to base two is three. (ββ2) and (2 logb 9) are irrational numbers (see sqrt2irr0 16199 resp. 2logb9irr 26533), satisfying the statement in 2irrexpqALT 26538. (Contributed by AV, 29-Dec-2022.) |
β’ ((ββ2)βπ(2 logb 9)) = 3 | ||
Theorem | 2irrexpqALT 26538* | Alternate proof of 2irrexpq 26472: There exist irrational numbers π and π such that (πβπ) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. In contrast to 2irrexpq 26472, this is a constructive proof because it is based on two explicitly named irrational numbers (ββ2) and (2 logb 9), see sqrt2irr0 16199, 2logb9irr 26533 and sqrt2cxp2logb9e3 26537. Therefore, this proof is also acceptable/usable in intuitionistic logic. (Contributed by AV, 23-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ βπ β (β β β)βπ β (β β β)(πβππ) β β | ||
Theorem | angval 26539* | Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range ( β Ο, Ο]. To convert from the geometry notation, ππ΄π΅πΆ, the measure of the angle with legs π΄π΅, πΆπ΅ where πΆ is more counterclockwise for positive angles, is represented by ((πΆ β π΅)πΉ(π΄ β π΅)). (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΄ β 0) β§ (π΅ β β β§ π΅ β 0)) β (π΄πΉπ΅) = (ββ(logβ(π΅ / π΄)))) | ||
Theorem | angcan 26540* | Cancel a constant multiplier in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΄ β 0) β§ (π΅ β β β§ π΅ β 0) β§ (πΆ β β β§ πΆ β 0)) β ((πΆ Β· π΄)πΉ(πΆ Β· π΅)) = (π΄πΉπ΅)) | ||
Theorem | angneg 26541* | Cancel a negative sign in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΄ β 0) β§ (π΅ β β β§ π΅ β 0)) β (-π΄πΉ-π΅) = (π΄πΉπ΅)) | ||
Theorem | angvald 26542* | The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26539. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π β β) & β’ (π β π β 0) β β’ (π β (ππΉπ) = (ββ(logβ(π / π)))) | ||
Theorem | angcld 26543* | The (signed) angle between two vectors is in (-Ο(,]Ο). Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π β β) & β’ (π β π β 0) β β’ (π β (ππΉπ) β (-Ο(,]Ο)) | ||
Theorem | angrteqvd 26544* | Two vectors are at a right angle iff their quotient is purely imaginary. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π β β) & β’ (π β π β 0) β β’ (π β ((ππΉπ) β {(Ο / 2), -(Ο / 2)} β (ββ(π / π)) = 0)) | ||
Theorem | cosangneg2d 26545* | The cosine of the angle between π and -π is the negative of that between π and π. If A, B and C are collinear points, this implies that the cosines of DBA and DBC sum to zero, i.e., that DBA and DBC are supplementary. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π β β) & β’ (π β π β 0) β β’ (π β (cosβ(ππΉ-π)) = -(cosβ(ππΉπ))) | ||
Theorem | angrtmuld 26546* | Perpendicularity of two vectors does not change under rescaling the second. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π β 0) & β’ (π β π β 0) & β’ (π β (π / π) β β) β β’ (π β ((ππΉπ) β {(Ο / 2), -(Ο / 2)} β (ππΉπ) β {(Ο / 2), -(Ο / 2)})) | ||
Theorem | ang180lem1 26547* | Lemma for ang180 26552. Show that the "revolution number" π is an integer, using efeq1 26270 to show that since the product of the three arguments π΄, 1 / (1 β π΄), (π΄ β 1) / π΄ is -1, the sum of the logarithms must be an integer multiple of 2Οi away from Οi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ π = (((logβ(1 / (1 β π΄))) + (logβ((π΄ β 1) / π΄))) + (logβπ΄)) & β’ π = (((π / i) / (2 Β· Ο)) β (1 / 2)) β β’ ((π΄ β β β§ π΄ β 0 β§ π΄ β 1) β (π β β€ β§ (π / i) β β)) | ||
Theorem | ang180lem2 26548* | Lemma for ang180 26552. Show that the revolution number π is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 26311, but the resulting bound gives only π β€ 1 for the upper bound. The case π = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments π΄, 1 / (1 β π΄), (π΄ β 1) / π΄ must lie on the negative real axis, which is a contradiction because clearly if π΄ is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ π = (((logβ(1 / (1 β π΄))) + (logβ((π΄ β 1) / π΄))) + (logβπ΄)) & β’ π = (((π / i) / (2 Β· Ο)) β (1 / 2)) β β’ ((π΄ β β β§ π΄ β 0 β§ π΄ β 1) β (-2 < π β§ π < 1)) | ||
Theorem | ang180lem3 26549* | Lemma for ang180 26552. Since ang180lem1 26547 shows that π is an integer and ang180lem2 26548 shows that π is strictly between -2 and 1, it follows that π β {-1, 0}, and these two cases correspond to the two possible values for π. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ π = (((logβ(1 / (1 β π΄))) + (logβ((π΄ β 1) / π΄))) + (logβπ΄)) & β’ π = (((π / i) / (2 Β· Ο)) β (1 / 2)) β β’ ((π΄ β β β§ π΄ β 0 β§ π΄ β 1) β π β {-(i Β· Ο), (i Β· Ο)}) | ||
Theorem | ang180lem4 26550* | Lemma for ang180 26552. Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ ((π΄ β β β§ π΄ β 0 β§ π΄ β 1) β ((((1 β π΄)πΉ1) + (π΄πΉ(π΄ β 1))) + (1πΉπ΄)) β {-Ο, Ο}) | ||
Theorem | ang180lem5 26551* | Lemma for ang180 26552: Reduce the statement to two variables. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΄ β 0) β§ (π΅ β β β§ π΅ β 0) β§ π΄ β π΅) β ((((π΄ β π΅)πΉπ΄) + (π΅πΉ(π΅ β π΄))) + (π΄πΉπ΅)) β {-Ο, Ο}) | ||
Theorem | ang180 26552* | The sum of angles ππ΄π΅πΆ + ππ΅πΆπ΄ + ππΆπ΄π΅ in a triangle adds up to either Ο or -Ο, i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΅ β β β§ πΆ β β) β§ (π΄ β π΅ β§ π΅ β πΆ β§ π΄ β πΆ)) β ((((πΆ β π΅)πΉ(π΄ β π΅)) + ((π΄ β πΆ)πΉ(π΅ β πΆ))) + ((π΅ β π΄)πΉ(πΆ β π΄))) β {-Ο, Ο}) | ||
Theorem | lawcoslem1 26553 | Lemma for lawcos 26554. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π β 0) β β’ (π β ((absβ(π β π))β2) = ((((absβπ)β2) + ((absβπ)β2)) β (2 Β· (((absβπ) Β· (absβπ)) Β· ((ββ(π / π)) / (absβ(π / π))))))) | ||
Theorem | lawcos 26554* | Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where πΉ is the signed angle construct (as used in ang180 26552), π is the distance of line segment BC, π is the distance of line segment AC, π is the distance of line segment AB, and π is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 26553 to prove this algebraically simpler case. The Metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 16095). The Pythagorean theorem pythag 26555 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ π = (absβ(π΅ β πΆ)) & β’ π = (absβ(π΄ β πΆ)) & β’ π = (absβ(π΄ β π΅)) & β’ π = ((π΅ β πΆ)πΉ(π΄ β πΆ)) β β’ (((π΄ β β β§ π΅ β β β§ πΆ β β) β§ (π΄ β πΆ β§ π΅ β πΆ)) β (πβ2) = (((πβ2) + (πβ2)) β (2 Β· ((π Β· π) Β· (cosβπ))))) | ||
Theorem | pythag 26555* | Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where πΉ is the signed angle construct (as used in ang180 26552), π is the distance of line segment BC, π is the distance of line segment AC, π is the distance of line segment AB (the hypotenuse), and π is the signed right angle m/_ BCA. We use the law of cosines lawcos 26554 to prove this, along with simple trigonometry facts like coshalfpi 26212 and cosneg 16095. (Contributed by David A. Wheeler, 13-Jun-2015.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ π = (absβ(π΅ β πΆ)) & β’ π = (absβ(π΄ β πΆ)) & β’ π = (absβ(π΄ β π΅)) & β’ π = ((π΅ β πΆ)πΉ(π΄ β πΆ)) β β’ (((π΄ β β β§ π΅ β β β§ πΆ β β) β§ (π΄ β πΆ β§ π΅ β πΆ) β§ π β {(Ο / 2), -(Ο / 2)}) β (πβ2) = ((πβ2) + (πβ2))) | ||
Theorem | isosctrlem1 26556 | Lemma for isosctr 26559. (Contributed by Saveliy Skresanov, 30-Dec-2016.) |
β’ ((π΄ β β β§ (absβπ΄) = 1 β§ Β¬ 1 = π΄) β (ββ(logβ(1 β π΄))) β Ο) | ||
Theorem | isosctrlem2 26557 | Lemma for isosctr 26559. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.) |
β’ ((π΄ β β β§ (absβπ΄) = 1 β§ Β¬ 1 = π΄) β (ββ(logβ(1 β π΄))) = (ββ(logβ(-π΄ / (1 β π΄))))) | ||
Theorem | isosctrlem3 26558* | Lemma for isosctr 26559. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΅ β β) β§ (π΄ β 0 β§ π΅ β 0 β§ π΄ β π΅) β§ (absβπ΄) = (absβπ΅)) β (-π΄πΉ(π΅ β π΄)) = ((π΄ β π΅)πΉ-π΅)) | ||
Theorem | isosctr 26559* | Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) β β’ (((π΄ β β β§ π΅ β β β§ πΆ β β) β§ (π΄ β πΆ β§ π΅ β πΆ β§ π΄ β π΅) β§ (absβ(π΄ β πΆ)) = (absβ(π΅ β πΆ))) β ((πΆ β π΄)πΉ(π΅ β π΄)) = ((π΄ β π΅)πΉ(πΆ β π΅))) | ||
Theorem | ssscongptld 26560* |
If two triangles have equal sides, one angle in one triangle has the
same cosine as the corresponding angle in the other triangle. This is a
partial form of the SSS congruence theorem.
This theorem is proven by using lawcos 26554 on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΈ β β) & β’ (π β πΊ β β) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) & β’ (π β π· β πΈ) & β’ (π β πΈ β πΊ) & β’ (π β (absβ(π΄ β π΅)) = (absβ(π· β πΈ))) & β’ (π β (absβ(π΅ β πΆ)) = (absβ(πΈ β πΊ))) & β’ (π β (absβ(πΆ β π΄)) = (absβ(πΊ β π·))) β β’ (π β (cosβ((π΄ β π΅)πΉ(πΆ β π΅))) = (cosβ((π· β πΈ)πΉ(πΊ β πΈ)))) | ||
Theorem | affineequiv 26561 | Equivalence between two ways of expressing π΅ as an affine combination of π΄ and πΆ. (Contributed by David Moews, 28-Feb-2017.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) β β’ (π β (π΅ = ((π· Β· π΄) + ((1 β π·) Β· πΆ)) β (πΆ β π΅) = (π· Β· (πΆ β π΄)))) | ||
Theorem | affineequiv2 26562 | Equivalence between two ways of expressing π΅ as an affine combination of π΄ and πΆ. (Contributed by David Moews, 28-Feb-2017.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) β β’ (π β (π΅ = ((π· Β· π΄) + ((1 β π·) Β· πΆ)) β (π΅ β π΄) = ((1 β π·) Β· (πΆ β π΄)))) | ||
Theorem | affineequiv3 26563 | Equivalence between two ways of expressing π΄ as an affine combination of π΅ and πΆ. (Contributed by AV, 22-Jan-2023.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) β β’ (π β (π΄ = (((1 β π·) Β· π΅) + (π· Β· πΆ)) β (π΄ β π΅) = (π· Β· (πΆ β π΅)))) | ||
Theorem | affineequiv4 26564 | Equivalence between two ways of expressing π΄ as an affine combination of π΅ and πΆ. (Contributed by AV, 22-Jan-2023.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) β β’ (π β (π΄ = (((1 β π·) Β· π΅) + (π· Β· πΆ)) β π΄ = ((π· Β· (πΆ β π΅)) + π΅))) | ||
Theorem | affineequivne 26565 | Equivalence between two ways of expressing π΄ as an affine combination of π΅ and πΆ if π΅ and πΆ are not equal. (Contributed by AV, 22-Jan-2023.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΅ β πΆ) β β’ (π β (π΄ = (((1 β π·) Β· π΅) + (π· Β· πΆ)) β π· = ((π΄ β π΅) / (πΆ β π΅)))) | ||
Theorem | angpieqvdlem 26566 | Equivalence used in the proof of angpieqvd 26569. (Contributed by David Moews, 28-Feb-2017.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ β π΅) & β’ (π β π΄ β πΆ) β β’ (π β (-((πΆ β π΅) / (π΄ β π΅)) β β+ β ((πΆ β π΅) / (πΆ β π΄)) β (0(,)1))) | ||
Theorem | angpieqvdlem2 26567* | Equivalence used in angpieqvd 26569. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) β β’ (π β (-((πΆ β π΅) / (π΄ β π΅)) β β+ β ((π΄ β π΅)πΉ(πΆ β π΅)) = Ο)) | ||
Theorem | angpined 26568* | If the angle at ABC is Ο, then π΄ is not equal to πΆ. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) β β’ (π β (((π΄ β π΅)πΉ(πΆ β π΅)) = Ο β π΄ β πΆ)) | ||
Theorem | angpieqvd 26569* | The angle ABC is Ο iff π΅ is a nontrivial convex combination of π΄ and πΆ, i.e., iff π΅ is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) β β’ (π β (((π΄ β π΅)πΉ(πΆ β π΅)) = Ο β βπ€ β (0(,)1)π΅ = ((π€ Β· π΄) + ((1 β π€) Β· πΆ)))) | ||
Theorem | chordthmlem 26570* | If π is the midpoint of AB and AQ = BQ, then QMB is a right angle. The proof uses ssscongptld 26560 to observe that, since AMQ and BMQ have equal sides, the angles QMB and QMA must be equal. Since they are supplementary, both must be right angles. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π = ((π΄ + π΅) / 2)) & β’ (π β (absβ(π΄ β π)) = (absβ(π΅ β π))) & β’ (π β π΄ β π΅) & β’ (π β π β π) β β’ (π β ((π β π)πΉ(π΅ β π)) β {(Ο / 2), -(Ο / 2)}) | ||
Theorem | chordthmlem2 26571* | If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26570, where P = B, and using angrtmuld 26546 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π = ((π΄ + π΅) / 2)) & β’ (π β π = ((π Β· π΄) + ((1 β π) Β· π΅))) & β’ (π β (absβ(π΄ β π)) = (absβ(π΅ β π))) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β π)πΉ(π β π)) β {(Ο / 2), -(Ο / 2)}) | ||
Theorem | chordthmlem3 26572 | If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 26571 and the Pythagorean theorem (pythag 26555) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π = ((π΄ + π΅) / 2)) & β’ (π β π = ((π Β· π΄) + ((1 β π) Β· π΅))) & β’ (π β (absβ(π΄ β π)) = (absβ(π΅ β π))) β β’ (π β ((absβ(π β π))β2) = (((absβ(π β π))β2) + ((absβ(π β π))β2))) | ||
Theorem | chordthmlem4 26573 | If P is on the segment AB and M is the midpoint of AB, then PA Β· PB = BM 2 β PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity π Β· (1 β π) = (1 / 2) 2 β ((1 / 2) β π) 2 . (Contributed by David Moews, 28-Feb-2017.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β (0[,]1)) & β’ (π β π = ((π΄ + π΅) / 2)) & β’ (π β π = ((π Β· π΄) + ((1 β π) Β· π΅))) β β’ (π β ((absβ(π β π΄)) Β· (absβ(π β π΅))) = (((absβ(π΅ β π))β2) β ((absβ(π β π))β2))) | ||
Theorem | chordthmlem5 26574 | If P is on the segment AB and AQ = BQ, then PA Β· PB = BQ 2 β PQ 2 . This follows from two uses of chordthmlem3 26572 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 β PQ 2 = (QM 2 + BM 2 ) β (QM 2 + PM 2 ) = BM 2 β PM 2 , which equals PA Β· PB by chordthmlem4 26573. (Contributed by David Moews, 28-Feb-2017.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π β (0[,]1)) & β’ (π β π = ((π Β· π΄) + ((1 β π) Β· π΅))) & β’ (π β (absβ(π΄ β π)) = (absβ(π΅ β π))) β β’ (π β ((absβ(π β π΄)) Β· (absβ(π β π΅))) = (((absβ(π΅ β π))β2) β ((absβ(π β π))β2))) | ||
Theorem | chordthm 26575* | The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA Β· PB and PC Β· PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to Ο. The result is proven by using chordthmlem5 26574 twice to show that PA Β· PB and PC Β· PD both equal BQ 2 β PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β ((π΄ β π)πΉ(π΅ β π)) = Ο) & β’ (π β ((πΆ β π)πΉ(π· β π)) = Ο) & β’ (π β π β β) & β’ (π β (absβ(π΄ β π)) = (absβ(π΅ β π))) & β’ (π β (absβ(π΄ β π)) = (absβ(πΆ β π))) & β’ (π β (absβ(π΄ β π)) = (absβ(π· β π))) β β’ (π β ((absβ(π β π΄)) Β· (absβ(π β π΅))) = ((absβ(π β πΆ)) Β· (absβ(π β π·)))) | ||
Theorem | heron 26576* | Heron's formula gives the area of a triangle given only the side lengths. If points A, B, C form a triangle, then the area of the triangle, represented here as (1 / 2) Β· π Β· π Β· abs(sinπ), is equal to the square root of π Β· (π β π) Β· (π β π) Β· (π β π), where π = (π + π + π) / 2 is half the perimeter of the triangle. Based on work by Jon Pennant. This is Metamath 100 proof #57. (Contributed by Mario Carneiro, 10-Mar-2019.) |
β’ πΉ = (π₯ β (β β {0}), π¦ β (β β {0}) β¦ (ββ(logβ(π¦ / π₯)))) & β’ π = (absβ(π΅ β πΆ)) & β’ π = (absβ(π΄ β πΆ)) & β’ π = (absβ(π΄ β π΅)) & β’ π = ((π΅ β πΆ)πΉ(π΄ β πΆ)) & β’ π = (((π + π) + π) / 2) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ β πΆ) & β’ (π β π΅ β πΆ) β β’ (π β (((1 / 2) Β· (π Β· π)) Β· (absβ(sinβπ))) = (ββ((π Β· (π β π)) Β· ((π β π) Β· (π β π))))) | ||
Theorem | quad2 26577 | The quadratic equation, without specifying the particular branch π· to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.) |
β’ (π β π΄ β β) & β’ (π β π΄ β 0) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ (π β π· β β) & β’ (π β (π·β2) = ((π΅β2) β (4 Β· (π΄ Β· πΆ)))) β β’ (π β (((π΄ Β· (πβ2)) + ((π΅ Β· π) + πΆ)) = 0 β (π = ((-π΅ + π·) / (2 Β· π΄)) β¨ π = ((-π΅ β π·) / (2 Β· π΄))))) | ||
Theorem | quad 26578 | The quadratic equation. (Contributed by Mario Carneiro, 23-Apr-2015.) |
β’ (π β π΄ β β) & β’ (π β π΄ β 0) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ (π β π· = ((π΅β2) β (4 Β· (π΄ Β· πΆ)))) β β’ (π β (((π΄ Β· (πβ2)) + ((π΅ Β· π) + πΆ)) = 0 β (π = ((-π΅ + (ββπ·)) / (2 Β· π΄)) β¨ π = ((-π΅ β (ββπ·)) / (2 Β· π΄))))) | ||
Theorem | 1cubrlem 26579 | The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
β’ ((-1βπ(2 / 3)) = ((-1 + (i Β· (ββ3))) / 2) β§ ((-1βπ(2 / 3))β2) = ((-1 β (i Β· (ββ3))) / 2)) | ||
Theorem | 1cubr 26580 | The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
β’ π = {1, ((-1 + (i Β· (ββ3))) / 2), ((-1 β (i Β· (ββ3))) / 2)} β β’ (π΄ β π β (π΄ β β β§ (π΄β3) = 1)) | ||
Theorem | dcubic1lem 26581 | Lemma for dcubic1 26583 and dcubic2 26582: simplify the cubic equation under the substitution π = π β π / π. (Contributed by Mario Carneiro, 26-Apr-2015.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πβ3) = (πΊ β π)) & β’ (π β πΊ β β) & β’ (π β (πΊβ2) = ((πβ2) + (πβ3))) & β’ (π β π = (π / 3)) & β’ (π β π = (π / 2)) & β’ (π β π β 0) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π = (π β (π / π))) β β’ (π β (((πβ3) + ((π Β· π) + π)) = 0 β (((πβ3)β2) + ((π Β· (πβ3)) β (πβ3))) = 0)) | ||
Theorem | dcubic2 26582* | Reverse direction of dcubic 26584. Given a solution π to the "substitution" quadratic equation π = π β π / π, show that π is in the desired form. (Contributed by Mario Carneiro, 25-Apr-2015.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πβ3) = (πΊ β π)) & β’ (π β πΊ β β) & β’ (π β (πΊβ2) = ((πβ2) + (πβ3))) & β’ (π β π = (π / 3)) & β’ (π β π = (π / 2)) & β’ (π β π β 0) & β’ (π β π β β) & β’ (π β π β 0) & β’ (π β π = (π β (π / π))) & β’ (π β ((πβ3) + ((π Β· π) + π)) = 0) β β’ (π β βπ β β ((πβ3) = 1 β§ π = ((π Β· π) β (π / (π Β· π))))) | ||
Theorem | dcubic1 26583 | Forward direction of dcubic 26584: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πβ3) = (πΊ β π)) & β’ (π β πΊ β β) & β’ (π β (πΊβ2) = ((πβ2) + (πβ3))) & β’ (π β π = (π / 3)) & β’ (π β π = (π / 2)) & β’ (π β π β 0) & β’ (π β π = (π β (π / π))) β β’ (π β ((πβ3) + ((π Β· π) + π)) = 0) | ||
Theorem | dcubic 26584* | Solutions to the depressed cubic, a special case of cubic 26587. (The definitions of π, π, πΊ, π here differ from mcubic 26585 by scale factors of -9, 54, 54 and -27 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πβ3) = (πΊ β π)) & β’ (π β πΊ β β) & β’ (π β (πΊβ2) = ((πβ2) + (πβ3))) & β’ (π β π = (π / 3)) & β’ (π β π = (π / 2)) & β’ (π β π β 0) β β’ (π β (((πβ3) + ((π Β· π) + π)) = 0 β βπ β β ((πβ3) = 1 β§ π = ((π Β· π) β (π / (π Β· π)))))) | ||
Theorem | mcubic 26585* | Solutions to a monic cubic equation, a special case of cubic 26587. (Contributed by Mario Carneiro, 24-Apr-2015.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πβ3) = ((π + πΊ) / 2)) & β’ (π β πΊ β β) & β’ (π β (πΊβ2) = ((πβ2) β (4 Β· (πβ3)))) & β’ (π β π = ((π΅β2) β (3 Β· πΆ))) & β’ (π β π = (((2 Β· (π΅β3)) β (9 Β· (π΅ Β· πΆ))) + (;27 Β· π·))) & β’ (π β π β 0) β β’ (π β ((((πβ3) + (π΅ Β· (πβ2))) + ((πΆ Β· π) + π·)) = 0 β βπ β β ((πβ3) = 1 β§ π = -(((π΅ + (π Β· π)) + (π / (π Β· π))) / 3)))) | ||
Theorem | cubic2 26586* | The solution to the general cubic equation, for arbitrary choices πΊ and π of the square and cube roots. (Contributed by Mario Carneiro, 23-Apr-2015.) |
β’ (π β π΄ β β) & β’ (π β π΄ β 0) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πβ3) = ((π + πΊ) / 2)) & β’ (π β πΊ β β) & β’ (π β (πΊβ2) = ((πβ2) β (4 Β· (πβ3)))) & β’ (π β π = ((π΅β2) β (3 Β· (π΄ Β· πΆ)))) & β’ (π β π = (((2 Β· (π΅β3)) β ((9 Β· π΄) Β· (π΅ Β· πΆ))) + (;27 Β· ((π΄β2) Β· π·)))) & β’ (π β π β 0) β β’ (π β ((((π΄ Β· (πβ3)) + (π΅ Β· (πβ2))) + ((πΆ Β· π) + π·)) = 0 β βπ β β ((πβ3) = 1 β§ π = -(((π΅ + (π Β· π)) + (π / (π Β· π))) / (3 Β· π΄))))) | ||
Theorem | cubic 26587* | The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4711 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.) |
β’ π = {1, ((-1 + (i Β· (ββ3))) / 2), ((-1 β (i Β· (ββ3))) / 2)} & β’ (π β π΄ β β) & β’ (π β π΄ β 0) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β π = (((π + (ββπΊ)) / 2)βπ(1 / 3))) & β’ (π β πΊ = ((πβ2) β (4 Β· (πβ3)))) & β’ (π β π = ((π΅β2) β (3 Β· (π΄ Β· πΆ)))) & β’ (π β π = (((2 Β· (π΅β3)) β ((9 Β· π΄) Β· (π΅ Β· πΆ))) + (;27 Β· ((π΄β2) Β· π·)))) & β’ (π β π β 0) β β’ (π β ((((π΄ Β· (πβ3)) + (π΅ Β· (πβ2))) + ((πΆ Β· π) + π·)) = 0 β βπ β π π = -(((π΅ + (π Β· π)) + (π / (π Β· π))) / (3 Β· π΄)))) | ||
Theorem | binom4 26588 | Work out a quartic binomial. (You would think that by this point it would be faster to use binom 15781, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.) |
β’ ((π΄ β β β§ π΅ β β) β ((π΄ + π΅)β4) = (((π΄β4) + (4 Β· ((π΄β3) Β· π΅))) + ((6 Β· ((π΄β2) Β· (π΅β2))) + ((4 Β· (π΄ Β· (π΅β3))) + (π΅β4))))) | ||
Theorem | dquartlem1 26589 | Lemma for dquart 26591. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π = ((2 Β· π)β2)) & β’ (π β π β 0) & β’ (π β πΌ β β) & β’ (π β (πΌβ2) = ((-(πβ2) β (π΅ / 2)) + ((πΆ / 4) / π))) β β’ (π β ((((πβ2) + ((π + π΅) / 2)) + ((((π / 2) Β· π) β (πΆ / 4)) / π)) = 0 β (π = (-π + πΌ) β¨ π = (-π β πΌ)))) | ||
Theorem | dquartlem2 26590 | Lemma for dquart 26591. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π = ((2 Β· π)β2)) & β’ (π β π β 0) & β’ (π β πΌ β β) & β’ (π β (πΌβ2) = ((-(πβ2) β (π΅ / 2)) + ((πΆ / 4) / π))) & β’ (π β π· β β) & β’ (π β (((πβ3) + ((2 Β· π΅) Β· (πβ2))) + ((((π΅β2) β (4 Β· π·)) Β· π) + -(πΆβ2))) = 0) β β’ (π β ((((π + π΅) / 2)β2) β (((πΆβ2) / 4) / π)) = π·) | ||
Theorem | dquart 26591 | Solve a depressed quartic equation. To eliminate π, which is the square root of a solution π to the resolvent cubic equation, apply cubic 26587 or one of its variants. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π = ((2 Β· π)β2)) & β’ (π β π β 0) & β’ (π β πΌ β β) & β’ (π β (πΌβ2) = ((-(πβ2) β (π΅ / 2)) + ((πΆ / 4) / π))) & β’ (π β π· β β) & β’ (π β (((πβ3) + ((2 Β· π΅) Β· (πβ2))) + ((((π΅β2) β (4 Β· π·)) Β· π) + -(πΆβ2))) = 0) & β’ (π β π½ β β) & β’ (π β (π½β2) = ((-(πβ2) β (π΅ / 2)) β ((πΆ / 4) / π))) β β’ (π β ((((πβ4) + (π΅ Β· (πβ2))) + ((πΆ Β· π) + π·)) = 0 β ((π = (-π + πΌ) β¨ π = (-π β πΌ)) β¨ (π = (π + π½) β¨ π = (π β π½))))) | ||
Theorem | quart1cl 26592 | Closure lemmas for quart 26599. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) β β’ (π β (π β β β§ π β β β§ π β β)) | ||
Theorem | quart1lem 26593 | Lemma for quart1 26594. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) & β’ (π β π β β) & β’ (π β π = (π + (π΄ / 4))) β β’ (π β π· = ((((π΄β4) / ;;256) + (π Β· ((π΄ / 4)β2))) + ((π Β· (π΄ / 4)) + π ))) | ||
Theorem | quart1 26594 | Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) & β’ (π β π β β) & β’ (π β π = (π + (π΄ / 4))) β β’ (π β (((πβ4) + (π΄ Β· (πβ3))) + ((π΅ Β· (πβ2)) + ((πΆ Β· π) + π·))) = (((πβ4) + (π Β· (πβ2))) + ((π Β· π) + π ))) | ||
Theorem | quartlem1 26595 | Lemma for quart 26599. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π = ((πβ2) + (;12 Β· π ))) & β’ (π β π = ((-(2 Β· (πβ3)) β (;27 Β· (πβ2))) + (;72 Β· (π Β· π )))) β β’ (π β (π = (((2 Β· π)β2) β (3 Β· ((πβ2) β (4 Β· π )))) β§ π = (((2 Β· ((2 Β· π)β3)) β (9 Β· ((2 Β· π) Β· ((πβ2) β (4 Β· π ))))) + (;27 Β· -(πβ2))))) | ||
Theorem | quartlem2 26596 | Closure lemmas for quart 26599. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β πΈ = -(π΄ / 4)) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) & β’ (π β π = ((πβ2) + (;12 Β· π ))) & β’ (π β π = ((-(2 Β· (πβ3)) β (;27 Β· (πβ2))) + (;72 Β· (π Β· π )))) & β’ (π β π = (ββ((πβ2) β (4 Β· (πβ3))))) β β’ (π β (π β β β§ π β β β§ π β β)) | ||
Theorem | quartlem3 26597 | Closure lemmas for quart 26599. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β πΈ = -(π΄ / 4)) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) & β’ (π β π = ((πβ2) + (;12 Β· π ))) & β’ (π β π = ((-(2 Β· (πβ3)) β (;27 Β· (πβ2))) + (;72 Β· (π Β· π )))) & β’ (π β π = (ββ((πβ2) β (4 Β· (πβ3))))) & β’ (π β π = ((ββπ) / 2)) & β’ (π β π = -((((2 Β· π) + π) + (π / π)) / 3)) & β’ (π β π = (((π + π) / 2)βπ(1 / 3))) & β’ (π β π β 0) β β’ (π β (π β β β§ π β β β§ π β β)) | ||
Theorem | quartlem4 26598 | Closure lemmas for quart 26599. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β πΈ = -(π΄ / 4)) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) & β’ (π β π = ((πβ2) + (;12 Β· π ))) & β’ (π β π = ((-(2 Β· (πβ3)) β (;27 Β· (πβ2))) + (;72 Β· (π Β· π )))) & β’ (π β π = (ββ((πβ2) β (4 Β· (πβ3))))) & β’ (π β π = ((ββπ) / 2)) & β’ (π β π = -((((2 Β· π) + π) + (π / π)) / 3)) & β’ (π β π = (((π + π) / 2)βπ(1 / 3))) & β’ (π β π β 0) & β’ (π β π β 0) & β’ (π β πΌ = (ββ((-(πβ2) β (π / 2)) + ((π / 4) / π)))) & β’ (π β π½ = (ββ((-(πβ2) β (π / 2)) β ((π / 4) / π)))) β β’ (π β (π β 0 β§ πΌ β β β§ π½ β β)) | ||
Theorem | quart 26599 | The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 34451) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π β β) & β’ (π β πΈ = -(π΄ / 4)) & β’ (π β π = (π΅ β ((3 / 8) Β· (π΄β2)))) & β’ (π β π = ((πΆ β ((π΄ Β· π΅) / 2)) + ((π΄β3) / 8))) & β’ (π β π = ((π· β ((πΆ Β· π΄) / 4)) + ((((π΄β2) Β· π΅) / ;16) β ((3 / ;;256) Β· (π΄β4))))) & β’ (π β π = ((πβ2) + (;12 Β· π ))) & β’ (π β π = ((-(2 Β· (πβ3)) β (;27 Β· (πβ2))) + (;72 Β· (π Β· π )))) & β’ (π β π = (ββ((πβ2) β (4 Β· (πβ3))))) & β’ (π β π = ((ββπ) / 2)) & β’ (π β π = -((((2 Β· π) + π) + (π / π)) / 3)) & β’ (π β π = (((π + π) / 2)βπ(1 / 3))) & β’ (π β π β 0) & β’ (π β π β 0) & β’ (π β πΌ = (ββ((-(πβ2) β (π / 2)) + ((π / 4) / π)))) & β’ (π β π½ = (ββ((-(πβ2) β (π / 2)) β ((π / 4) / π)))) β β’ (π β ((((πβ4) + (π΄ Β· (πβ3))) + ((π΅ Β· (πβ2)) + ((πΆ Β· π) + π·))) = 0 β ((π = ((πΈ β π) + πΌ) β¨ π = ((πΈ β π) β πΌ)) β¨ (π = ((πΈ + π) + π½) β¨ π = ((πΈ + π) β π½))))) | ||
Syntax | casin 26600 | The arcsine function. |
class arcsin |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |