| Metamath
Proof Explorer Theorem List (p. 266 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | loge 26501 | The natural logarithm of e. One case of Property 1b of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (log‘e) = 1 | ||
| Theorem | logi 26502 | The natural logarithm of i. (Contributed by Scott Fenton, 13-Apr-2020.) |
| ⊢ (log‘i) = (i · (π / 2)) | ||
| Theorem | logneg 26503 | The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014.) (Revised by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘-𝐴) = ((log‘𝐴) + (i · π))) | ||
| Theorem | logm1 26504 | The natural logarithm of negative 1. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
| ⊢ (log‘-1) = (i · π) | ||
| Theorem | lognegb 26505 | If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) | ||
| Theorem | relogoprlem 26506 | Lemma for relogmul 26507 and relogdiv 26508. Remark of [Cohen] p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (((log‘𝐴) ∈ ℂ ∧ (log‘𝐵) ∈ ℂ) → (exp‘((log‘𝐴)𝐹(log‘𝐵))) = ((exp‘(log‘𝐴))𝐺(exp‘(log‘𝐵)))) & ⊢ (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴)𝐹(log‘𝐵)) ∈ ℝ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴𝐺𝐵)) = ((log‘𝐴)𝐹(log‘𝐵))) | ||
| Theorem | relogmul 26507 | The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | relogdiv 26508 | The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | explog 26509 | Exponentiation of a nonzero complex number to an integer power. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = (exp‘(𝑁 · (log‘𝐴)))) | ||
| Theorem | reexplog 26510 | Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = (exp‘(𝑁 · (log‘𝐴)))) | ||
| Theorem | relogexp 26511 | The natural logarithm of positive 𝐴 raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers 𝑁. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(𝐴↑𝑁)) = (𝑁 · (log‘𝐴))) | ||
| Theorem | relog 26512 | Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) | ||
| Theorem | relogiso 26513 | The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (log ↾ ℝ+) Isom < , < (ℝ+, ℝ) | ||
| Theorem | reloggim 26514 | The natural logarithm is a group isomorphism from the group of positive reals under multiplication to the group of reals under addition. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (log ↾ ℝ+) ∈ (𝑃 GrpIso ℝfld) | ||
| Theorem | logltb 26515 | The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) | ||
| Theorem | logfac 26516* | The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) | ||
| Theorem | eflogeq 26517* | Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)))) | ||
| Theorem | logleb 26518 | Natural logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | ||
| Theorem | rplogcl 26519 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+) | ||
| Theorem | logge0 26520 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴)) | ||
| Theorem | logcj 26521 | The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴))) | ||
| Theorem | efiarg 26522 | The exponential of the "arg" function ℑ ∘ log. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) | ||
| Theorem | cosargd 26523 | The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 26522. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) | ||
| Theorem | cosarg0d 26524 | The cosine of the argument is zero precisely on the imaginary axis. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → ((cos‘(ℑ‘(log‘𝑋))) = 0 ↔ (ℜ‘𝑋) = 0)) | ||
| Theorem | argregt0 26525 | Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | argrege0 26526 | Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | argimgt0 26527 | Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π)) | ||
| Theorem | argimlt0 26528 | Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0)) | ||
| Theorem | logimul 26529 | Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2)))) | ||
| Theorem | logneg2 26530 | The logarithm of the negative of a number with positive imaginary part is i · π less than the original. (Compare logneg 26503.) (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π))) | ||
| Theorem | logmul2 26531 | Generalization of relogmul 26507 to a complex left argument. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | logdiv2 26532 | Generalization of relogdiv 26508 to a complex left argument. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | abslogle 26533 | Bound on the magnitude of the complex logarithm function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(log‘𝐴)) ≤ ((abs‘(log‘(abs‘𝐴))) + π)) | ||
| Theorem | tanarg 26534 | The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴))) | ||
| Theorem | logdivlti 26535 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴)) | ||
| Theorem | logdivlt 26536 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) | ||
| Theorem | logdivle 26537 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 3-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ ((log‘𝐵) / 𝐵) ≤ ((log‘𝐴) / 𝐴))) | ||
| Theorem | relogcld 26538 | Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘𝐴) ∈ ℝ) | ||
| Theorem | reeflogd 26539 | Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) | ||
| Theorem | relogmuld 26540 | The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | relogdivd 26541 | The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | logled 26542 | Natural logarithm preserves ≤. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | ||
| Theorem | relogefd 26543 | Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(exp‘𝐴)) = 𝐴) | ||
| Theorem | rplogcld 26544 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (log‘𝐴) ∈ ℝ+) | ||
| Theorem | logge0d 26545 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (log‘𝐴)) | ||
| Theorem | logge0b 26546 | The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 ≤ (log‘𝐴) ↔ 1 ≤ 𝐴)) | ||
| Theorem | loggt0b 26547 | The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 < (log‘𝐴) ↔ 1 < 𝐴)) | ||
| Theorem | logle1b 26548 | The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ 1 ↔ 𝐴 ≤ e)) | ||
| Theorem | loglt1b 26549 | The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) < 1 ↔ 𝐴 < e)) | ||
| Theorem | divlogrlim 26550 | The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 | ||
| Theorem | logno1 26551 | The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 30-May-2016.) |
| ⊢ ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) | ||
| Theorem | dvrelog 26552 | The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | ||
| Theorem | relogcn 26553 | The real logarithm function is continuous. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (log ↾ ℝ+) ∈ (ℝ+–cn→ℝ) | ||
| Theorem | ellogdm 26554 | Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) | ||
| Theorem | logdmn0 26555 | A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) | ||
| Theorem | logdmnrp 26556 | A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) | ||
| Theorem | logdmss 26557 | The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ 𝐷 ⊆ (ℂ ∖ {0}) | ||
| Theorem | logcnlem2 26558 | Lemma for logcn 26562. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) & ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) | ||
| Theorem | logcnlem3 26559 | Lemma for logcn 26562. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) & ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < if(𝑆 ≤ 𝑇, 𝑆, 𝑇)) ⇒ ⊢ (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)) | ||
| Theorem | logcnlem4 26560 | Lemma for logcn 26562. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) & ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < if(𝑆 ≤ 𝑇, 𝑆, 𝑇)) ⇒ ⊢ (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅) | ||
| Theorem | logcnlem5 26561* | Lemma for logcn 26562. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) | ||
| Theorem | logcn 26562 | The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (log ↾ 𝐷) ∈ (𝐷–cn→ℂ) | ||
| Theorem | dvloglem 26563 | Lemma for dvlog 26566. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (log “ 𝐷) ∈ (TopOpen‘ℂfld) | ||
| Theorem | logdmopn 26564 | The "continuous domain" of log is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ 𝐷 ∈ (TopOpen‘ℂfld) | ||
| Theorem | logf1o2 26565 | The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (log ↾ 𝐷):𝐷–1-1-onto→(◡ℑ “ (-π(,)π)) | ||
| Theorem | dvlog 26566* | The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (ℂ D (log ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (1 / 𝑥)) | ||
| Theorem | dvlog2lem 26567 | Lemma for dvlog2 26568. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) ⇒ ⊢ 𝑆 ⊆ (ℂ ∖ (-∞(,]0)) | ||
| Theorem | dvlog2 26568* | The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 26566. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) ⇒ ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) | ||
| Theorem | advlog 26569 | The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
| ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) | ||
| Theorem | advlogexp 26570* | The antiderivative of a power of the logarithm. (Set 𝐴 = 1 and multiply by (-1)↑𝑁 · 𝑁! to get the antiderivative of log(𝑥)↑𝑁 itself.) (Contributed by Mario Carneiro, 22-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))) | ||
| Theorem | efopnlem1 26571 | Lemma for efopn 26573. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) < π) | ||
| Theorem | efopnlem2 26572 | Lemma for efopn 26573. (Contributed by Mario Carneiro, 2-May-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝑅 ∈ ℝ+ ∧ 𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽) | ||
| Theorem | efopn 26573 | The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑆 ∈ 𝐽 → (exp “ 𝑆) ∈ 𝐽) | ||
| Theorem | logtayllem 26574* | Lemma for logtayl 26575. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)))) ∈ dom ⇝ ) | ||
| Theorem | logtayl 26575* | The Taylor series for -log(1 − 𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴))) | ||
| Theorem | logtaylsum 26576* | The Taylor series for -log(1 − 𝐴), as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ ((𝐴↑𝑘) / 𝑘) = -(log‘(1 − 𝐴))) | ||
| Theorem | logtayl2 26577* | Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) ⇒ ⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴)) | ||
| Theorem | logccv 26578 | The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) | ||
| Theorem | cxpval 26579 | Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) | ||
| Theorem | cxpef 26580 | Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | ||
| Theorem | 0cxp 26581 | Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) | ||
| Theorem | cxpexpz 26582 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | cxpexp 26583 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | logcxp 26584 | Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
| Theorem | cxp0 26585 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐0) = 1) | ||
| Theorem | cxp1 26586 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐1) = 𝐴) | ||
| Theorem | 1cxp 26587 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1) | ||
| Theorem | ecxp 26588 | Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴)) | ||
| Theorem | cxpcl 26589 | Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
| Theorem | recxpcl 26590 | Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) | ||
| Theorem | rpcxpcl 26591 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
| Theorem | cxpne0 26592 | Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ≠ 0) | ||
| Theorem | cxpeq0 26593 | Complex exponentiation is zero iff the base is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑐𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 ≠ 0))) | ||
| Theorem | cxpadd 26594 | Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpp1 26595 | Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 1)) = ((𝐴↑𝑐𝐵) · 𝐴)) | ||
| Theorem | cxpneg 26596 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐-𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpsub 26597 | Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpge0 26598 | Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → 0 ≤ (𝐴↑𝑐𝐵)) | ||
| Theorem | mulcxplem 26599 | Lemma for mulcxp 26600. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶))) | ||
| Theorem | mulcxp 26600 | Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |