| Metamath
Proof Explorer Theorem List (p. 266 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | efif1olem1 26501* | Lemma for efif1o 26505. (Contributed by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) | ||
| Theorem | efif1olem2 26502* | Lemma for efif1o 26505. (Contributed by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) | ||
| Theorem | efif1olem3 26503* | Lemma for efif1o 26505. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) | ||
| Theorem | efif1olem4 26504* | The exponential function of an imaginary number maps any interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) & ⊢ 𝑆 = (sin ↾ (-(π / 2)[,](π / 2))) ⇒ ⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) | ||
| Theorem | efif1o 26505* | The exponential function of an imaginary number maps any open-below, closed-above interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ (𝐴 ∈ ℝ → 𝐹:𝐷–1-1-onto→𝐶) | ||
| Theorem | efifo 26506* | The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹:ℝ–onto→𝐶 | ||
| Theorem | eff1olem 26507* | The exponential function maps the set 𝑆, of complex numbers with imaginary part in a real interval of length 2 · π, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝑆 = (◡ℑ “ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) ⇒ ⊢ (𝜑 → (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0})) | ||
| Theorem | eff1o 26508 | The exponential function maps the set 𝑆, of complex numbers with imaginary part in the closed-above, open-below interval from -π to π one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
| ⊢ 𝑆 = (◡ℑ “ (-π(,]π)) ⇒ ⊢ (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0}) | ||
| Theorem | efabl 26509* | The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) & ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘ℂfld)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) | ||
| Theorem | efsubm 26510* | The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) & ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘ℂfld)) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld))) | ||
| Theorem | circgrp 26511 | The circle group 𝑇 is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶) ⇒ ⊢ 𝑇 ∈ Abel | ||
| Theorem | circsubm 26512 | The circle group 𝑇 is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶) ⇒ ⊢ 𝐶 ∈ (SubMnd‘(mulGrp‘ℂfld)) | ||
| Syntax | clog 26513 | Extend class notation with the natural logarithm function on complex numbers. |
| class log | ||
| Syntax | ccxp 26514 | Extend class notation with the complex power function. |
| class ↑𝑐 | ||
| Definition | df-log 26515 | Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ log = ◡(exp ↾ (◡ℑ “ (-π(,]π))) | ||
| Definition | df-cxp 26516* | Define the power function on complex numbers. Note that the value of this function when 𝑥 = 0 and (ℜ‘𝑦) ≤ 0, 𝑦 ≠ 0 should properly be undefined, but defining it by convention this way simplifies the domain. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) | ||
| Theorem | logrn 26517 | The range of the natural logarithm function, also the principal domain of the exponential function. This allows to write the longer class expression as simply ran log. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
| ⊢ ran log = (◡ℑ “ (-π(,]π)) | ||
| Theorem | ellogrn 26518 | Write out the property 𝐴 ∈ ran log explicitly. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π)) | ||
| Theorem | dflog2 26519 | The natural logarithm function in terms of the exponential function restricted to its principal domain. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ log = ◡(exp ↾ ran log) | ||
| Theorem | relogrn 26520 | The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ran log) | ||
| Theorem | logrncn 26521 | The range of the natural logarithm function is a subset of the complex numbers. (Contributed by Mario Carneiro, 13-May-2014.) |
| ⊢ (𝐴 ∈ ran log → 𝐴 ∈ ℂ) | ||
| Theorem | eff1o2 26522 | The exponential function restricted to its principal domain maps one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
| ⊢ (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) | ||
| Theorem | logf1o 26523 | The natural logarithm function maps the nonzero complex numbers one-to-one onto its range. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | ||
| Theorem | dfrelog 26524 | The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) | ||
| Theorem | relogf1o 26525 | The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | ||
| Theorem | logrncl 26526 | Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log) | ||
| Theorem | logcl 26527 | Closure of the natural logarithm function. (Contributed by NM, 21-Apr-2008.) (Revised by Mario Carneiro, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) | ||
| Theorem | logimcl 26528 | Closure of the imaginary part of the logarithm function. (Contributed by Mario Carneiro, 23-Sep-2014.) (Revised by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | ||
| Theorem | logcld 26529 | The logarithm of a nonzero complex number is a complex number. Deduction form of logcl 26527. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) | ||
| Theorem | logimcld 26530 | The imaginary part of the logarithm is in (-π(,]π). Deduction form of logimcl 26528. Compare logimclad 26531. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (-π < (ℑ‘(log‘𝑋)) ∧ (ℑ‘(log‘𝑋)) ≤ π)) | ||
| Theorem | logimclad 26531 | The imaginary part of the logarithm is in (-π(,]π). Alternate form of logimcld 26530. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (ℑ‘(log‘𝑋)) ∈ (-π(,]π)) | ||
| Theorem | abslogimle 26532 | The imaginary part of the logarithm function has absolute value less than pi. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π) | ||
| Theorem | logrnaddcl 26533 | The range of the natural logarithm is closed under addition with reals. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ ran log ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ran log) | ||
| Theorem | relogcl 26534 | Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | ||
| Theorem | eflog 26535 | Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | ||
| Theorem | logeq0im1 26536 | If the logarithm of a number is 0, the number must be 1. (Contributed by David A. Wheeler, 22-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (log‘𝐴) = 0) → 𝐴 = 1) | ||
| Theorem | logccne0 26537 | The logarithm isn't 0 if its argument isn't 0 or 1. (Contributed by David A. Wheeler, 17-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ≠ 0) | ||
| Theorem | logne0 26538 | Logarithm of a non-1 positive real number is not zero and thus suitable as a divisor. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 14-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 1) → (log‘𝐴) ≠ 0) | ||
| Theorem | reeflog 26539 | Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴) | ||
| Theorem | logef 26540 | Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ (𝐴 ∈ ran log → (log‘(exp‘𝐴)) = 𝐴) | ||
| Theorem | relogef 26541 | Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (𝐴 ∈ ℝ → (log‘(exp‘𝐴)) = 𝐴) | ||
| Theorem | logeftb 26542 | Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log) → ((log‘𝐴) = 𝐵 ↔ (exp‘𝐵) = 𝐴)) | ||
| Theorem | relogeftb 26543 | Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → ((log‘𝐴) = 𝐵 ↔ (exp‘𝐵) = 𝐴)) | ||
| Theorem | log1 26544 | The natural logarithm of 1. One case of Property 1a of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (log‘1) = 0 | ||
| Theorem | loge 26545 | The natural logarithm of e. One case of Property 1b of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (log‘e) = 1 | ||
| Theorem | logi 26546 | The natural logarithm of i. (Contributed by Scott Fenton, 13-Apr-2020.) |
| ⊢ (log‘i) = (i · (π / 2)) | ||
| Theorem | logneg 26547 | The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014.) (Revised by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘-𝐴) = ((log‘𝐴) + (i · π))) | ||
| Theorem | logm1 26548 | The natural logarithm of negative 1. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
| ⊢ (log‘-1) = (i · π) | ||
| Theorem | lognegb 26549 | If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) | ||
| Theorem | relogoprlem 26550 | Lemma for relogmul 26551 and relogdiv 26552. Remark of [Cohen] p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (((log‘𝐴) ∈ ℂ ∧ (log‘𝐵) ∈ ℂ) → (exp‘((log‘𝐴)𝐹(log‘𝐵))) = ((exp‘(log‘𝐴))𝐺(exp‘(log‘𝐵)))) & ⊢ (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴)𝐹(log‘𝐵)) ∈ ℝ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴𝐺𝐵)) = ((log‘𝐴)𝐹(log‘𝐵))) | ||
| Theorem | relogmul 26551 | The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | relogdiv 26552 | The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | explog 26553 | Exponentiation of a nonzero complex number to an integer power. (Contributed by Paul Chapman, 21-Apr-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = (exp‘(𝑁 · (log‘𝐴)))) | ||
| Theorem | reexplog 26554 | Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = (exp‘(𝑁 · (log‘𝐴)))) | ||
| Theorem | relogexp 26555 | The natural logarithm of positive 𝐴 raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers 𝑁. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(𝐴↑𝑁)) = (𝑁 · (log‘𝐴))) | ||
| Theorem | relog 26556 | Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) | ||
| Theorem | relogiso 26557 | The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (log ↾ ℝ+) Isom < , < (ℝ+, ℝ) | ||
| Theorem | reloggim 26558 | The natural logarithm is a group isomorphism from the group of positive reals under multiplication to the group of reals under addition. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (log ↾ ℝ+) ∈ (𝑃 GrpIso ℝfld) | ||
| Theorem | logltb 26559 | The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) | ||
| Theorem | logfac 26560* | The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) | ||
| Theorem | eflogeq 26561* | Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)))) | ||
| Theorem | logleb 26562 | Natural logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | ||
| Theorem | rplogcl 26563 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+) | ||
| Theorem | logge0 26564 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴)) | ||
| Theorem | logcj 26565 | The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴))) | ||
| Theorem | efiarg 26566 | The exponential of the "arg" function ℑ ∘ log. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) | ||
| Theorem | cosargd 26567 | The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 26566. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) | ||
| Theorem | cosarg0d 26568 | The cosine of the argument is zero precisely on the imaginary axis. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → ((cos‘(ℑ‘(log‘𝑋))) = 0 ↔ (ℜ‘𝑋) = 0)) | ||
| Theorem | argregt0 26569 | Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | argrege0 26570 | Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | argimgt0 26571 | Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π)) | ||
| Theorem | argimlt0 26572 | Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0)) | ||
| Theorem | logimul 26573 | Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2)))) | ||
| Theorem | logneg2 26574 | The logarithm of the negative of a number with positive imaginary part is i · π less than the original. (Compare logneg 26547.) (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π))) | ||
| Theorem | logmul2 26575 | Generalization of relogmul 26551 to a complex left argument. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | logdiv2 26576 | Generalization of relogdiv 26552 to a complex left argument. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | abslogle 26577 | Bound on the magnitude of the complex logarithm function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(log‘𝐴)) ≤ ((abs‘(log‘(abs‘𝐴))) + π)) | ||
| Theorem | tanarg 26578 | The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴))) | ||
| Theorem | logdivlti 26579 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴)) | ||
| Theorem | logdivlt 26580 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) | ||
| Theorem | logdivle 26581 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 3-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ ((log‘𝐵) / 𝐵) ≤ ((log‘𝐴) / 𝐴))) | ||
| Theorem | relogcld 26582 | Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘𝐴) ∈ ℝ) | ||
| Theorem | reeflogd 26583 | Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) | ||
| Theorem | relogmuld 26584 | The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | relogdivd 26585 | The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | logled 26586 | Natural logarithm preserves ≤. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | ||
| Theorem | relogefd 26587 | Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(exp‘𝐴)) = 𝐴) | ||
| Theorem | rplogcld 26588 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (log‘𝐴) ∈ ℝ+) | ||
| Theorem | logge0d 26589 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (log‘𝐴)) | ||
| Theorem | logge0b 26590 | The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 ≤ (log‘𝐴) ↔ 1 ≤ 𝐴)) | ||
| Theorem | loggt0b 26591 | The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 < (log‘𝐴) ↔ 1 < 𝐴)) | ||
| Theorem | logle1b 26592 | The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ 1 ↔ 𝐴 ≤ e)) | ||
| Theorem | loglt1b 26593 | The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) < 1 ↔ 𝐴 < e)) | ||
| Theorem | divlogrlim 26594 | The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 | ||
| Theorem | logno1 26595 | The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 30-May-2016.) |
| ⊢ ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) | ||
| Theorem | dvrelog 26596 | The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | ||
| Theorem | relogcn 26597 | The real logarithm function is continuous. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (log ↾ ℝ+) ∈ (ℝ+–cn→ℝ) | ||
| Theorem | ellogdm 26598 | Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) | ||
| Theorem | logdmn0 26599 | A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) | ||
| Theorem | logdmnrp 26600 | A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |