Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbe Structured version   Visualization version   GIF version

Definition df-gbe 46030
Description: Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as 𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbe GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Distinct variable group:   𝑧,𝑝,𝑞

Detailed syntax breakdown of Definition df-gbe
StepHypRef Expression
1 cgbe 46027 . 2 class GoldbachEven
2 vp . . . . . . . 8 setvar 𝑝
32cv 1541 . . . . . . 7 class 𝑝
4 codd 45907 . . . . . . 7 class Odd
53, 4wcel 2107 . . . . . 6 wff 𝑝 ∈ Odd
6 vq . . . . . . . 8 setvar 𝑞
76cv 1541 . . . . . . 7 class 𝑞
87, 4wcel 2107 . . . . . 6 wff 𝑞 ∈ Odd
9 vz . . . . . . . 8 setvar 𝑧
109cv 1541 . . . . . . 7 class 𝑧
11 caddc 11062 . . . . . . . 8 class +
123, 7, 11co 7361 . . . . . . 7 class (𝑝 + 𝑞)
1310, 12wceq 1542 . . . . . 6 wff 𝑧 = (𝑝 + 𝑞)
145, 8, 13w3a 1088 . . . . 5 wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
15 cprime 16555 . . . . 5 class
1614, 6, 15wrex 3070 . . . 4 wff 𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
1716, 2, 15wrex 3070 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
18 ceven 45906 . . 3 class Even
1917, 9, 18crab 3406 . 2 class {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
201, 19wceq 1542 1 wff GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Colors of variables: wff setvar class
This definition is referenced by:  isgbe  46033
  Copyright terms: Public domain W3C validator