Detailed syntax breakdown of Definition df-gbe
| Step | Hyp | Ref
| Expression |
| 1 | | cgbe 47732 |
. 2
class
GoldbachEven |
| 2 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 4 | | codd 47612 |
. . . . . . 7
class
Odd |
| 5 | 3, 4 | wcel 2108 |
. . . . . 6
wff 𝑝 ∈ Odd |
| 6 | | vq |
. . . . . . . 8
setvar 𝑞 |
| 7 | 6 | cv 1539 |
. . . . . . 7
class 𝑞 |
| 8 | 7, 4 | wcel 2108 |
. . . . . 6
wff 𝑞 ∈ Odd |
| 9 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 11 | | caddc 11158 |
. . . . . . . 8
class
+ |
| 12 | 3, 7, 11 | co 7431 |
. . . . . . 7
class (𝑝 + 𝑞) |
| 13 | 10, 12 | wceq 1540 |
. . . . . 6
wff 𝑧 = (𝑝 + 𝑞) |
| 14 | 5, 8, 13 | w3a 1087 |
. . . . 5
wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) |
| 15 | | cprime 16708 |
. . . . 5
class
ℙ |
| 16 | 14, 6, 15 | wrex 3070 |
. . . 4
wff
∃𝑞 ∈
ℙ (𝑝 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) |
| 17 | 16, 2, 15 | wrex 3070 |
. . 3
wff
∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ (𝑝 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) |
| 18 | | ceven 47611 |
. . 3
class
Even |
| 19 | 17, 9, 18 | crab 3436 |
. 2
class {𝑧 ∈ Even ∣
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
(𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} |
| 20 | 1, 19 | wceq 1540 |
1
wff
GoldbachEven = {𝑧 ∈
Even ∣ ∃𝑝
∈ ℙ ∃𝑞
∈ ℙ (𝑝 ∈
Odd ∧ 𝑞 ∈ Odd
∧ 𝑧 = (𝑝 + 𝑞))} |