Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbe Structured version   Visualization version   GIF version

Definition df-gbe 47622
Description: Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as 𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbe GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Distinct variable group:   𝑧,𝑝,𝑞

Detailed syntax breakdown of Definition df-gbe
StepHypRef Expression
1 cgbe 47619 . 2 class GoldbachEven
2 vp . . . . . . . 8 setvar 𝑝
32cv 1536 . . . . . . 7 class 𝑝
4 codd 47499 . . . . . . 7 class Odd
53, 4wcel 2108 . . . . . 6 wff 𝑝 ∈ Odd
6 vq . . . . . . . 8 setvar 𝑞
76cv 1536 . . . . . . 7 class 𝑞
87, 4wcel 2108 . . . . . 6 wff 𝑞 ∈ Odd
9 vz . . . . . . . 8 setvar 𝑧
109cv 1536 . . . . . . 7 class 𝑧
11 caddc 11187 . . . . . . . 8 class +
123, 7, 11co 7448 . . . . . . 7 class (𝑝 + 𝑞)
1310, 12wceq 1537 . . . . . 6 wff 𝑧 = (𝑝 + 𝑞)
145, 8, 13w3a 1087 . . . . 5 wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
15 cprime 16718 . . . . 5 class
1614, 6, 15wrex 3076 . . . 4 wff 𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
1716, 2, 15wrex 3076 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
18 ceven 47498 . . 3 class Even
1917, 9, 18crab 3443 . 2 class {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
201, 19wceq 1537 1 wff GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Colors of variables: wff setvar class
This definition is referenced by:  isgbe  47625
  Copyright terms: Public domain W3C validator