Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbe Structured version   Visualization version   GIF version

Definition df-gbe 45088
Description: Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as 𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbe GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Distinct variable group:   𝑧,𝑝,𝑞

Detailed syntax breakdown of Definition df-gbe
StepHypRef Expression
1 cgbe 45085 . 2 class GoldbachEven
2 vp . . . . . . . 8 setvar 𝑝
32cv 1538 . . . . . . 7 class 𝑝
4 codd 44965 . . . . . . 7 class Odd
53, 4wcel 2108 . . . . . 6 wff 𝑝 ∈ Odd
6 vq . . . . . . . 8 setvar 𝑞
76cv 1538 . . . . . . 7 class 𝑞
87, 4wcel 2108 . . . . . 6 wff 𝑞 ∈ Odd
9 vz . . . . . . . 8 setvar 𝑧
109cv 1538 . . . . . . 7 class 𝑧
11 caddc 10805 . . . . . . . 8 class +
123, 7, 11co 7255 . . . . . . 7 class (𝑝 + 𝑞)
1310, 12wceq 1539 . . . . . 6 wff 𝑧 = (𝑝 + 𝑞)
145, 8, 13w3a 1085 . . . . 5 wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
15 cprime 16304 . . . . 5 class
1614, 6, 15wrex 3064 . . . 4 wff 𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
1716, 2, 15wrex 3064 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
18 ceven 44964 . . 3 class Even
1917, 9, 18crab 3067 . 2 class {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
201, 19wceq 1539 1 wff GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Colors of variables: wff setvar class
This definition is referenced by:  isgbe  45091
  Copyright terms: Public domain W3C validator