Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbe Structured version   Visualization version   GIF version

Definition df-gbe 47858
Description: Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as 𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbe GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Distinct variable group:   𝑧,𝑝,𝑞

Detailed syntax breakdown of Definition df-gbe
StepHypRef Expression
1 cgbe 47855 . 2 class GoldbachEven
2 vp . . . . . . . 8 setvar 𝑝
32cv 1540 . . . . . . 7 class 𝑝
4 codd 47735 . . . . . . 7 class Odd
53, 4wcel 2111 . . . . . 6 wff 𝑝 ∈ Odd
6 vq . . . . . . . 8 setvar 𝑞
76cv 1540 . . . . . . 7 class 𝑞
87, 4wcel 2111 . . . . . 6 wff 𝑞 ∈ Odd
9 vz . . . . . . . 8 setvar 𝑧
109cv 1540 . . . . . . 7 class 𝑧
11 caddc 11009 . . . . . . . 8 class +
123, 7, 11co 7346 . . . . . . 7 class (𝑝 + 𝑞)
1310, 12wceq 1541 . . . . . 6 wff 𝑧 = (𝑝 + 𝑞)
145, 8, 13w3a 1086 . . . . 5 wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
15 cprime 16582 . . . . 5 class
1614, 6, 15wrex 3056 . . . 4 wff 𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
1716, 2, 15wrex 3056 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))
18 ceven 47734 . . 3 class Even
1917, 9, 18crab 3395 . 2 class {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
201, 19wceq 1541 1 wff GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
Colors of variables: wff setvar class
This definition is referenced by:  isgbe  47861
  Copyright terms: Public domain W3C validator