![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isgbe | Structured version Visualization version GIF version |
Description: The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
isgbe | ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2736 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = (𝑝 + 𝑞) ↔ 𝑍 = (𝑝 + 𝑞))) | |
2 | 1 | 3anbi3d 1442 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
3 | 2 | 2rexbidv 3219 | . 2 ⊢ (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
4 | df-gbe 46402 | . 2 ⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |
5 | 3, 4 | elrab2 3685 | 1 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 (class class class)co 7405 + caddc 11109 ℙcprime 16604 Even ceven 46278 Odd codd 46279 GoldbachEven cgbe 46399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-rab 3433 df-v 3476 df-gbe 46402 |
This theorem is referenced by: gbeeven 46408 gbepos 46412 gbegt5 46415 6gbe 46425 8gbe 46427 sbgoldbwt 46431 sbgoldbst 46432 sbgoldbalt 46435 nnsum3primesgbe 46446 bgoldbtbndlem4 46462 bgoldbtbnd 46463 |
Copyright terms: Public domain | W3C validator |