![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isgbe | Structured version Visualization version GIF version |
Description: The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
isgbe | ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2728 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = (𝑝 + 𝑞) ↔ 𝑍 = (𝑝 + 𝑞))) | |
2 | 1 | 3anbi3d 1438 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
3 | 2 | 2rexbidv 3211 | . 2 ⊢ (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
4 | df-gbe 46961 | . 2 ⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |
5 | 3, 4 | elrab2 3679 | 1 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 (class class class)co 7402 + caddc 11110 ℙcprime 16611 Even ceven 46837 Odd codd 46838 GoldbachEven cgbe 46958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rex 3063 df-rab 3425 df-v 3468 df-gbe 46961 |
This theorem is referenced by: gbeeven 46967 gbepos 46971 gbegt5 46974 6gbe 46984 8gbe 46986 sbgoldbwt 46990 sbgoldbst 46991 sbgoldbalt 46994 nnsum3primesgbe 47005 bgoldbtbndlem4 47021 bgoldbtbnd 47022 |
Copyright terms: Public domain | W3C validator |