Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgbe Structured version   Visualization version   GIF version

Theorem isgbe 45155
Description: The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
isgbe (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
Distinct variable group:   𝑍,𝑝,𝑞

Proof of Theorem isgbe
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2743 . . . 4 (𝑧 = 𝑍 → (𝑧 = (𝑝 + 𝑞) ↔ 𝑍 = (𝑝 + 𝑞)))
213anbi3d 1440 . . 3 (𝑧 = 𝑍 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
322rexbidv 3230 . 2 (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
4 df-gbe 45152 . 2 GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
53, 4elrab2 3628 1 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wrex 3066  (class class class)co 7268   + caddc 10858  cprime 16357   Even ceven 45028   Odd codd 45029   GoldbachEven cgbe 45149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rex 3071  df-rab 3074  df-v 3432  df-gbe 45152
This theorem is referenced by:  gbeeven  45158  gbepos  45162  gbegt5  45165  6gbe  45175  8gbe  45177  sbgoldbwt  45181  sbgoldbst  45182  sbgoldbalt  45185  nnsum3primesgbe  45196  bgoldbtbndlem4  45212  bgoldbtbnd  45213
  Copyright terms: Public domain W3C validator