| Metamath
Proof Explorer Theorem List (p. 468 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pimrecltneg 46701 | The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ((1 / 𝐶)(,)0)}) | ||
| Theorem | salpreimagtge 46702* | If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) | ||
| Theorem | salpreimaltle 46703* | If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) | ||
| Theorem | issmflem 46704* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | issmf 46705* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | salpreimalelt 46706* | If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
| Theorem | salpreimagtlt 46707* | If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
| Theorem | smfpreimalt 46708* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smff 46709 | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | ||
| Theorem | smfdmss 46710 | The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | ||
| Theorem | issmff 46711* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | issmfd 46712* | A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpreimaltf 46713* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfdf 46714* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | sssmf 46715 | The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | mbfresmf 46716 | A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) & ⊢ 𝑆 = dom vol ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | cnfsmf 46717 | A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) & ⊢ 𝑆 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | incsmflem 46718* | A nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝐶 = sup(𝑌, ℝ*, < ) & ⊢ 𝐷 = (-∞(,)𝐶) & ⊢ 𝐸 = (-∞(,]𝐶) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) | ||
| Theorem | incsmf 46719* | A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfsssmf 46720 | If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑅 ∈ SAlg) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑅 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmflelem 46721* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmfle 46722* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | smfpimltmpt 46723* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimltxr 46724* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfdmpt 46725* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfconst 46726* | Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | sssmfmpt 46727* | The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | cnfrrnsmf 46728 | A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝑋)) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfid 46729* | The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) | ||
| Theorem | bormflebmf 46730 | A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋))) & ⊢ 𝐿 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐿)) | ||
| Theorem | smfpreimale 46731* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded below is in the subspace sigma-algebra induced by its domain. See Proposition 121B (ii) of [Fremlin1] p. 35 (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfgtlem 46732* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmfgt 46733* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | issmfled 46734* | A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpimltxrmptf 46735* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimltxrmpt 46736* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfmbfcex 46737* | A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25570). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑆 = dom vol & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) | ||
| Theorem | issmfgtd 46738* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpreimagt 46739* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfaddlem1 46740* | Given the sum of two functions, the preimage of an unbounded below, open interval, expressed as the countable union of intersections of preimages of both functions. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = ∪ 𝑝 ∈ ℚ ∪ 𝑞 ∈ (𝐾‘𝑝){𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 < 𝑝 ∧ 𝐷 < 𝑞)}) | ||
| Theorem | smfaddlem2 46741* | The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) | ||
| Theorem | smfadd 46742* | The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | decsmflem 46743* | A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝐶 = sup(𝑌, ℝ*, < ) & ⊢ 𝐷 = (-∞(,)𝐶) & ⊢ 𝐸 = (-∞(,]𝐶) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) | ||
| Theorem | decsmf 46744* | A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfpreimagtf 46745* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfgelem 46746* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmfge 46747* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | smflimlem1 46748* | Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷 ∩ 𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → (𝐷 ∩ 𝐼) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smflimlem2 46749* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ⊆ (𝐷 ∩ 𝐼)) | ||
| Theorem | smflimlem3 46750* | The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∩ 𝐼)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (1 / 𝐾) < 𝑌) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) | ||
| Theorem | smflimlem4 46751* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → (𝐷 ∩ 𝐼) ⊆ {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴}) | ||
| Theorem | smflimlem5 46752* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smflimlem6 46753* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smflim 46754* | The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | nsssmfmbflem 46755* | The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑆 = dom vol & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) | ||
| Theorem | nsssmfmbf 46756 | The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑆 = dom vol ⇒ ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn | ||
| Theorem | smfpimgtxr 46757* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfpimgtmpt 46758* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpreimage 46759* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | mbfpsssmf 46760 | Real-valued measurable functions are a proper subset of sigma-measurable functions (w.r.t. the Lebesgue measure on the reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑆 = dom vol ⇒ ⊢ (MblFn ∩ (ℝ ↑pm ℝ)) ⊊ (SMblFn‘𝑆) | ||
| Theorem | smfpimgtxrmptf 46761* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimgtxrmpt 46762* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimioompt 46763* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimioo 46764 | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfresal 46765* | Given a sigma-measurable function, the subsets of ℝ whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝑇 ∈ SAlg) | ||
| Theorem | smfrec 46766* | The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0} ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfres 46767 | The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfmullem1 46768 | The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑉 ∈ ℝ) & ⊢ (𝜑 → (𝑈 · 𝑉) < 𝐴) & ⊢ 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) & ⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) & ⊢ (𝜑 → 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) & ⊢ (𝜑 → 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) & ⊢ (𝜑 → 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) & ⊢ (𝜑 → 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) & ⊢ (𝜑 → 𝐻 ∈ (𝑃(,)𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (𝑆(,)𝑍)) ⇒ ⊢ (𝜑 → (𝐻 · 𝐼) < 𝐴) | ||
| Theorem | smfmullem2 46769* | The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴} & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑉 ∈ ℝ) & ⊢ (𝜑 → (𝑈 · 𝑉) < 𝐴) & ⊢ (𝜑 → 𝑃 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑆 ∈ ℚ) & ⊢ (𝜑 → 𝑍 ∈ ℚ) & ⊢ (𝜑 → 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) & ⊢ (𝜑 → 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) & ⊢ (𝜑 → 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) & ⊢ (𝜑 → 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) & ⊢ 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) & ⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))) | ||
| Theorem | smfmullem3 46770* | The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑉 ∈ ℝ) & ⊢ (𝜑 → (𝑈 · 𝑉) < 𝑅) & ⊢ 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) & ⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))) | ||
| Theorem | smfmullem4 46771* | The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} & ⊢ 𝐸 = (𝑞 ∈ 𝐾 ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) | ||
| Theorem | smfmul 46772* | The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfmulc1 46773* | A sigma-measurable function multiplied by a constant is sigma-measurable. Proposition 121E (c) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfdiv 46774* | The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpimbor1lem1 46775* | Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ 𝐽) & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑇) | ||
| Theorem | smfpimbor1lem2 46776* | Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ 𝑃 = (◡𝐹 “ 𝐸) & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfpimbor1 46777 | Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ 𝑃 = (◡𝐹 “ 𝐸) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smf2id 46778* | Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfco 46779 | The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐻 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfneg 46780* | The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smffmptf 46781 | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) | ||
| Theorem | smffmpt 46782* | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) | ||
| Theorem | smflim2 46783* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 46754 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpimcclem 46784* | Lemma for smfpimcc 46785 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 ∈ 𝑉 & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
| Theorem | smfpimcc 46785* | Given a countable set of sigma-measurable functions, and a Borel set 𝐴 there exists a choice function ℎ that, for each measurable function, chooses a measurable set that, when intersected with the function's domain, gives the preimage of 𝐴. This is a generalization of the observation at the beginning of the proof of Proposition 121F of [Fremlin1] p. 39 . The statement would also be provable for uncountable sets, but in most cases it will suffice to consider the countable case, and only the axiom of countable choice will be needed. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
| Theorem | issmfle2d 46786* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimmpt 46787* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsuplem1 46788* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐻:𝑍⟶𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfsuplem2 46789* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfsuplem3 46790* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsup 46791* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsupmpt 46792* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsupxr 46793* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfinflem 46794* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfinf 46795* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfinfmpt 46796* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimsuplem1 46797* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) ⇒ ⊢ (𝜑 → dom (𝐻‘𝐾) ⊆ dom (𝐹‘𝐾)) | ||
| Theorem | smflimsuplem2 46798* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑛 ∈ 𝑍) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝑋 ∈ dom (𝐻‘𝑛)) | ||
| Theorem | smflimsuplem3 46799* | The limit of the (𝐻‘𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ (ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimsuplem4 46800* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑥 ∈ ∩ 𝑛 ∈ (ℤ≥‘𝑁)dom (𝐻‘𝑛)) & ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |