Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbow Structured version   Visualization version   GIF version

Definition df-gbow 47736
Description: Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbow GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
Distinct variable group:   𝑧,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-gbow
StepHypRef Expression
1 cgbow 47733 . 2 class GoldbachOddW
2 vz . . . . . . . 8 setvar 𝑧
32cv 1539 . . . . . . 7 class 𝑧
4 vp . . . . . . . . . 10 setvar 𝑝
54cv 1539 . . . . . . . . 9 class 𝑝
6 vq . . . . . . . . . 10 setvar 𝑞
76cv 1539 . . . . . . . . 9 class 𝑞
8 caddc 11158 . . . . . . . . 9 class +
95, 7, 8co 7431 . . . . . . . 8 class (𝑝 + 𝑞)
10 vr . . . . . . . . 9 setvar 𝑟
1110cv 1539 . . . . . . . 8 class 𝑟
129, 11, 8co 7431 . . . . . . 7 class ((𝑝 + 𝑞) + 𝑟)
133, 12wceq 1540 . . . . . 6 wff 𝑧 = ((𝑝 + 𝑞) + 𝑟)
14 cprime 16708 . . . . . 6 class
1513, 10, 14wrex 3070 . . . . 5 wff 𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1615, 6, 14wrex 3070 . . . 4 wff 𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1716, 4, 14wrex 3070 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
18 codd 47612 . . 3 class Odd
1917, 2, 18crab 3436 . 2 class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
201, 19wceq 1540 1 wff GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
Colors of variables: wff setvar class
This definition is referenced by:  isgbow  47739
  Copyright terms: Public domain W3C validator