Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbow Structured version   Visualization version   GIF version

Definition df-gbow 47623
Description: Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbow GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
Distinct variable group:   𝑧,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-gbow
StepHypRef Expression
1 cgbow 47620 . 2 class GoldbachOddW
2 vz . . . . . . . 8 setvar 𝑧
32cv 1536 . . . . . . 7 class 𝑧
4 vp . . . . . . . . . 10 setvar 𝑝
54cv 1536 . . . . . . . . 9 class 𝑝
6 vq . . . . . . . . . 10 setvar 𝑞
76cv 1536 . . . . . . . . 9 class 𝑞
8 caddc 11187 . . . . . . . . 9 class +
95, 7, 8co 7448 . . . . . . . 8 class (𝑝 + 𝑞)
10 vr . . . . . . . . 9 setvar 𝑟
1110cv 1536 . . . . . . . 8 class 𝑟
129, 11, 8co 7448 . . . . . . 7 class ((𝑝 + 𝑞) + 𝑟)
133, 12wceq 1537 . . . . . 6 wff 𝑧 = ((𝑝 + 𝑞) + 𝑟)
14 cprime 16718 . . . . . 6 class
1513, 10, 14wrex 3076 . . . . 5 wff 𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1615, 6, 14wrex 3076 . . . 4 wff 𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1716, 4, 14wrex 3076 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
18 codd 47499 . . 3 class Odd
1917, 2, 18crab 3443 . 2 class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
201, 19wceq 1537 1 wff GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
Colors of variables: wff setvar class
This definition is referenced by:  isgbow  47626
  Copyright terms: Public domain W3C validator