Detailed syntax breakdown of Definition df-gbow
| Step | Hyp | Ref
| Expression |
| 1 | | cgbow 47733 |
. 2
class
GoldbachOddW |
| 2 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 4 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑝 |
| 6 | | vq |
. . . . . . . . . 10
setvar 𝑞 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑞 |
| 8 | | caddc 11158 |
. . . . . . . . 9
class
+ |
| 9 | 5, 7, 8 | co 7431 |
. . . . . . . 8
class (𝑝 + 𝑞) |
| 10 | | vr |
. . . . . . . . 9
setvar 𝑟 |
| 11 | 10 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 12 | 9, 11, 8 | co 7431 |
. . . . . . 7
class ((𝑝 + 𝑞) + 𝑟) |
| 13 | 3, 12 | wceq 1540 |
. . . . . 6
wff 𝑧 = ((𝑝 + 𝑞) + 𝑟) |
| 14 | | cprime 16708 |
. . . . . 6
class
ℙ |
| 15 | 13, 10, 14 | wrex 3070 |
. . . . 5
wff
∃𝑟 ∈
ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) |
| 16 | 15, 6, 14 | wrex 3070 |
. . . 4
wff
∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) |
| 17 | 16, 4, 14 | wrex 3070 |
. . 3
wff
∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) |
| 18 | | codd 47612 |
. . 3
class
Odd |
| 19 | 17, 2, 18 | crab 3436 |
. 2
class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} |
| 20 | 1, 19 | wceq 1540 |
1
wff
GoldbachOddW = {𝑧 ∈
Odd ∣ ∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} |