Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbow Structured version   Visualization version   GIF version

Definition df-gbow 45201
Description: Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-gbow GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
Distinct variable group:   𝑧,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-gbow
StepHypRef Expression
1 cgbow 45198 . 2 class GoldbachOddW
2 vz . . . . . . . 8 setvar 𝑧
32cv 1538 . . . . . . 7 class 𝑧
4 vp . . . . . . . . . 10 setvar 𝑝
54cv 1538 . . . . . . . . 9 class 𝑝
6 vq . . . . . . . . . 10 setvar 𝑞
76cv 1538 . . . . . . . . 9 class 𝑞
8 caddc 10874 . . . . . . . . 9 class +
95, 7, 8co 7275 . . . . . . . 8 class (𝑝 + 𝑞)
10 vr . . . . . . . . 9 setvar 𝑟
1110cv 1538 . . . . . . . 8 class 𝑟
129, 11, 8co 7275 . . . . . . 7 class ((𝑝 + 𝑞) + 𝑟)
133, 12wceq 1539 . . . . . 6 wff 𝑧 = ((𝑝 + 𝑞) + 𝑟)
14 cprime 16376 . . . . . 6 class
1513, 10, 14wrex 3065 . . . . 5 wff 𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1615, 6, 14wrex 3065 . . . 4 wff 𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1716, 4, 14wrex 3065 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)
18 codd 45077 . . 3 class Odd
1917, 2, 18crab 3068 . 2 class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
201, 19wceq 1539 1 wff GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
Colors of variables: wff setvar class
This definition is referenced by:  isgbow  45204
  Copyright terms: Public domain W3C validator