Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbo Structured version   Visualization version   GIF version

Definition df-gbo 46408
Description: Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
df-gbo GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Distinct variable group:   𝑧,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-gbo
StepHypRef Expression
1 cgbo 46405 . 2 class GoldbachOdd
2 vp . . . . . . . . . 10 setvar 𝑝
32cv 1540 . . . . . . . . 9 class 𝑝
4 codd 46283 . . . . . . . . 9 class Odd
53, 4wcel 2106 . . . . . . . 8 wff 𝑝 ∈ Odd
6 vq . . . . . . . . . 10 setvar 𝑞
76cv 1540 . . . . . . . . 9 class 𝑞
87, 4wcel 2106 . . . . . . . 8 wff 𝑞 ∈ Odd
9 vr . . . . . . . . . 10 setvar 𝑟
109cv 1540 . . . . . . . . 9 class 𝑟
1110, 4wcel 2106 . . . . . . . 8 wff 𝑟 ∈ Odd
125, 8, 11w3a 1087 . . . . . . 7 wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )
13 vz . . . . . . . . 9 setvar 𝑧
1413cv 1540 . . . . . . . 8 class 𝑧
15 caddc 11112 . . . . . . . . . 10 class +
163, 7, 15co 7408 . . . . . . . . 9 class (𝑝 + 𝑞)
1716, 10, 15co 7408 . . . . . . . 8 class ((𝑝 + 𝑞) + 𝑟)
1814, 17wceq 1541 . . . . . . 7 wff 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1912, 18wa 396 . . . . . 6 wff ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
20 cprime 16607 . . . . . 6 class
2119, 9, 20wrex 3070 . . . . 5 wff 𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
2221, 6, 20wrex 3070 . . . 4 wff 𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
2322, 2, 20wrex 3070 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
2423, 13, 4crab 3432 . 2 class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
251, 24wceq 1541 1 wff GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Colors of variables: wff setvar class
This definition is referenced by:  isgbo  46411  tgoldbachgtALTV  46470
  Copyright terms: Public domain W3C validator