Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gbo Structured version   Visualization version   GIF version

Definition df-gbo 47781
Description: Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
df-gbo GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Distinct variable group:   𝑧,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-gbo
StepHypRef Expression
1 cgbo 47778 . 2 class GoldbachOdd
2 vp . . . . . . . . . 10 setvar 𝑝
32cv 1540 . . . . . . . . 9 class 𝑝
4 codd 47656 . . . . . . . . 9 class Odd
53, 4wcel 2111 . . . . . . . 8 wff 𝑝 ∈ Odd
6 vq . . . . . . . . . 10 setvar 𝑞
76cv 1540 . . . . . . . . 9 class 𝑞
87, 4wcel 2111 . . . . . . . 8 wff 𝑞 ∈ Odd
9 vr . . . . . . . . . 10 setvar 𝑟
109cv 1540 . . . . . . . . 9 class 𝑟
1110, 4wcel 2111 . . . . . . . 8 wff 𝑟 ∈ Odd
125, 8, 11w3a 1086 . . . . . . 7 wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )
13 vz . . . . . . . . 9 setvar 𝑧
1413cv 1540 . . . . . . . 8 class 𝑧
15 caddc 11004 . . . . . . . . . 10 class +
163, 7, 15co 7341 . . . . . . . . 9 class (𝑝 + 𝑞)
1716, 10, 15co 7341 . . . . . . . 8 class ((𝑝 + 𝑞) + 𝑟)
1814, 17wceq 1541 . . . . . . 7 wff 𝑧 = ((𝑝 + 𝑞) + 𝑟)
1912, 18wa 395 . . . . . 6 wff ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
20 cprime 16577 . . . . . 6 class
2119, 9, 20wrex 3056 . . . . 5 wff 𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
2221, 6, 20wrex 3056 . . . 4 wff 𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
2322, 2, 20wrex 3056 . . 3 wff 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))
2423, 13, 4crab 3395 . 2 class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
251, 24wceq 1541 1 wff GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Colors of variables: wff setvar class
This definition is referenced by:  isgbo  47784  tgoldbachgtALTV  47843
  Copyright terms: Public domain W3C validator