Detailed syntax breakdown of Definition df-gbo
| Step | Hyp | Ref
| Expression |
| 1 | | cgbo 47728 |
. 2
class
GoldbachOdd |
| 2 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
| 3 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑝 |
| 4 | | codd 47606 |
. . . . . . . . 9
class
Odd |
| 5 | 3, 4 | wcel 2109 |
. . . . . . . 8
wff 𝑝 ∈ Odd |
| 6 | | vq |
. . . . . . . . . 10
setvar 𝑞 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑞 |
| 8 | 7, 4 | wcel 2109 |
. . . . . . . 8
wff 𝑞 ∈ Odd |
| 9 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
| 10 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑟 |
| 11 | 10, 4 | wcel 2109 |
. . . . . . . 8
wff 𝑟 ∈ Odd |
| 12 | 5, 8, 11 | w3a 1086 |
. . . . . . 7
wff (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) |
| 13 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 15 | | caddc 11137 |
. . . . . . . . . 10
class
+ |
| 16 | 3, 7, 15 | co 7410 |
. . . . . . . . 9
class (𝑝 + 𝑞) |
| 17 | 16, 10, 15 | co 7410 |
. . . . . . . 8
class ((𝑝 + 𝑞) + 𝑟) |
| 18 | 14, 17 | wceq 1540 |
. . . . . . 7
wff 𝑧 = ((𝑝 + 𝑞) + 𝑟) |
| 19 | 12, 18 | wa 395 |
. . . . . 6
wff ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) |
| 20 | | cprime 16695 |
. . . . . 6
class
ℙ |
| 21 | 19, 9, 20 | wrex 3061 |
. . . . 5
wff
∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) |
| 22 | 21, 6, 20 | wrex 3061 |
. . . 4
wff
∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) |
| 23 | 22, 2, 20 | wrex 3061 |
. . 3
wff
∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) |
| 24 | 23, 13, 4 | crab 3420 |
. 2
class {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} |
| 25 | 1, 24 | wceq 1540 |
1
wff
GoldbachOdd = {𝑧 ∈ Odd
∣ ∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} |