![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isgbow | Structured version Visualization version GIF version |
Description: The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
isgbow | ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
2 | 1 | rexbidv 3185 | . . 3 ⊢ (𝑧 = 𝑍 → (∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) |
3 | 2 | 2rexbidv 3228 | . 2 ⊢ (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) |
4 | df-gbow 47623 | . 2 ⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} | |
5 | 3, 4 | elrab2 3711 | 1 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 + caddc 11187 ℙcprime 16718 Odd codd 47499 GoldbachOddW cgbow 47620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-gbow 47623 |
This theorem is referenced by: gbowodd 47629 gbogbow 47630 gbowpos 47633 gbowgt5 47636 gbowge7 47637 7gbow 47646 sbgoldbwt 47651 sbgoldbm 47658 nnsum4primesodd 47670 |
Copyright terms: Public domain | W3C validator |