Detailed syntax breakdown of Definition df-gex
| Step | Hyp | Ref
| Expression |
| 1 | | cgex 19543 |
. 2
class
gEx |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vi |
. . . 4
setvar 𝑖 |
| 5 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 9 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 10 | | cmg 19085 |
. . . . . . . . 9
class
.g |
| 11 | 9, 10 | cfv 6561 |
. . . . . . . 8
class
(.g‘𝑔) |
| 12 | 6, 8, 11 | co 7431 |
. . . . . . 7
class (𝑛(.g‘𝑔)𝑥) |
| 13 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 14 | 9, 13 | cfv 6561 |
. . . . . . 7
class
(0g‘𝑔) |
| 15 | 12, 14 | wceq 1540 |
. . . . . 6
wff (𝑛(.g‘𝑔)𝑥) = (0g‘𝑔) |
| 16 | | cbs 17247 |
. . . . . . 7
class
Base |
| 17 | 9, 16 | cfv 6561 |
. . . . . 6
class
(Base‘𝑔) |
| 18 | 15, 7, 17 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔) |
| 19 | | cn 12266 |
. . . . 5
class
ℕ |
| 20 | 18, 5, 19 | crab 3436 |
. . . 4
class {𝑛 ∈ ℕ ∣
∀𝑥 ∈
(Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} |
| 21 | 4 | cv 1539 |
. . . . . 6
class 𝑖 |
| 22 | | c0 4333 |
. . . . . 6
class
∅ |
| 23 | 21, 22 | wceq 1540 |
. . . . 5
wff 𝑖 = ∅ |
| 24 | | cc0 11155 |
. . . . 5
class
0 |
| 25 | | cr 11154 |
. . . . . 6
class
ℝ |
| 26 | | clt 11295 |
. . . . . 6
class
< |
| 27 | 21, 25, 26 | cinf 9481 |
. . . . 5
class inf(𝑖, ℝ, <
) |
| 28 | 23, 24, 27 | cif 4525 |
. . . 4
class if(𝑖 = ∅, 0, inf(𝑖, ℝ, <
)) |
| 29 | 4, 20, 28 | csb 3899 |
. . 3
class
⦋{𝑛
∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) |
| 30 | 2, 3, 29 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦
⦋{𝑛 ∈
ℕ ∣ ∀𝑥
∈ (Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
| 31 | 1, 30 | wceq 1540 |
1
wff gEx =
(𝑔 ∈ V ↦
⦋{𝑛 ∈
ℕ ∣ ∀𝑥
∈ (Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |