MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexval Structured version   Visualization version   GIF version

Theorem gexval 18695
Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexval.1 𝑋 = (Base‘𝐺)
gexval.2 · = (.g𝐺)
gexval.3 0 = (0g𝐺)
gexval.4 𝐸 = (gEx‘𝐺)
gexval.i 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
Assertion
Ref Expression
gexval (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥, · ,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem gexval
Dummy variables 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexval.4 . 2 𝐸 = (gEx‘𝐺)
2 df-gex 18649 . . 3 gEx = (𝑔 ∈ V ↦ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
3 nnex 11631 . . . . . 6 ℕ ∈ V
43rabex 5199 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} ∈ V
54a1i 11 . . . 4 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} ∈ V)
6 simpr 488 . . . . . . . . . . . . 13 ((𝐺𝑉𝑔 = 𝐺) → 𝑔 = 𝐺)
76fveq2d 6649 . . . . . . . . . . . 12 ((𝐺𝑉𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
8 gexval.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
97, 8eqtr4di 2851 . . . . . . . . . . 11 ((𝐺𝑉𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
106fveq2d 6649 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑔 = 𝐺) → (.g𝑔) = (.g𝐺))
11 gexval.2 . . . . . . . . . . . . . 14 · = (.g𝐺)
1210, 11eqtr4di 2851 . . . . . . . . . . . . 13 ((𝐺𝑉𝑔 = 𝐺) → (.g𝑔) = · )
1312oveqd 7152 . . . . . . . . . . . 12 ((𝐺𝑉𝑔 = 𝐺) → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
146fveq2d 6649 . . . . . . . . . . . . 13 ((𝐺𝑉𝑔 = 𝐺) → (0g𝑔) = (0g𝐺))
15 gexval.3 . . . . . . . . . . . . 13 0 = (0g𝐺)
1614, 15eqtr4di 2851 . . . . . . . . . . . 12 ((𝐺𝑉𝑔 = 𝐺) → (0g𝑔) = 0 )
1713, 16eqeq12d 2814 . . . . . . . . . . 11 ((𝐺𝑉𝑔 = 𝐺) → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
189, 17raleqbidv 3354 . . . . . . . . . 10 ((𝐺𝑉𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 ))
1918rabbidv 3427 . . . . . . . . 9 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
20 gexval.i . . . . . . . . 9 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
2119, 20eqtr4di 2851 . . . . . . . 8 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} = 𝐼)
2221eqeq2d 2809 . . . . . . 7 ((𝐺𝑉𝑔 = 𝐺) → (𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} ↔ 𝑖 = 𝐼))
2322biimpa 480 . . . . . 6 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → 𝑖 = 𝐼)
2423eqeq1d 2800 . . . . 5 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → (𝑖 = ∅ ↔ 𝐼 = ∅))
2523infeq1d 8925 . . . . 5 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < ))
2624, 25ifbieq2d 4450 . . . 4 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
275, 26csbied 3864 . . 3 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
28 elex 3459 . . 3 (𝐺𝑉𝐺 ∈ V)
29 c0ex 10624 . . . . 5 0 ∈ V
30 ltso 10710 . . . . . 6 < Or ℝ
3130infex 8941 . . . . 5 inf(𝐼, ℝ, < ) ∈ V
3229, 31ifex 4473 . . . 4 if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V
3332a1i 11 . . 3 (𝐺𝑉 → if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V)
342, 27, 28, 33fvmptd2 6753 . 2 (𝐺𝑉 → (gEx‘𝐺) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
351, 34syl5eq 2845 1 (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  csb 3828  c0 4243  ifcif 4425  cfv 6324  (class class class)co 7135  infcinf 8889  cr 10525  0cc0 10526   < clt 10664  cn 11625  Basecbs 16475  0gc0g 16705  .gcmg 18216  gExcgex 18645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-nn 11626  df-gex 18649
This theorem is referenced by:  gexlem1  18696  gexlem2  18699
  Copyright terms: Public domain W3C validator