MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexval Structured version   Visualization version   GIF version

Theorem gexval 19483
Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexval.1 𝑋 = (Base‘𝐺)
gexval.2 · = (.g𝐺)
gexval.3 0 = (0g𝐺)
gexval.4 𝐸 = (gEx‘𝐺)
gexval.i 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
Assertion
Ref Expression
gexval (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥, · ,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem gexval
Dummy variables 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexval.4 . 2 𝐸 = (gEx‘𝐺)
2 df-gex 19434 . . 3 gEx = (𝑔 ∈ V ↦ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
3 nnex 12123 . . . . . 6 ℕ ∈ V
43rabex 5275 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} ∈ V
54a1i 11 . . . 4 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} ∈ V)
6 simpr 484 . . . . . . . . . . . . 13 ((𝐺𝑉𝑔 = 𝐺) → 𝑔 = 𝐺)
76fveq2d 6821 . . . . . . . . . . . 12 ((𝐺𝑉𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
8 gexval.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
97, 8eqtr4di 2783 . . . . . . . . . . 11 ((𝐺𝑉𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
106fveq2d 6821 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑔 = 𝐺) → (.g𝑔) = (.g𝐺))
11 gexval.2 . . . . . . . . . . . . . 14 · = (.g𝐺)
1210, 11eqtr4di 2783 . . . . . . . . . . . . 13 ((𝐺𝑉𝑔 = 𝐺) → (.g𝑔) = · )
1312oveqd 7358 . . . . . . . . . . . 12 ((𝐺𝑉𝑔 = 𝐺) → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
146fveq2d 6821 . . . . . . . . . . . . 13 ((𝐺𝑉𝑔 = 𝐺) → (0g𝑔) = (0g𝐺))
15 gexval.3 . . . . . . . . . . . . 13 0 = (0g𝐺)
1614, 15eqtr4di 2783 . . . . . . . . . . . 12 ((𝐺𝑉𝑔 = 𝐺) → (0g𝑔) = 0 )
1713, 16eqeq12d 2746 . . . . . . . . . . 11 ((𝐺𝑉𝑔 = 𝐺) → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
189, 17raleqbidv 3310 . . . . . . . . . 10 ((𝐺𝑉𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 ))
1918rabbidv 3400 . . . . . . . . 9 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
20 gexval.i . . . . . . . . 9 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
2119, 20eqtr4di 2783 . . . . . . . 8 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} = 𝐼)
2221eqeq2d 2741 . . . . . . 7 ((𝐺𝑉𝑔 = 𝐺) → (𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} ↔ 𝑖 = 𝐼))
2322biimpa 476 . . . . . 6 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → 𝑖 = 𝐼)
2423eqeq1d 2732 . . . . 5 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → (𝑖 = ∅ ↔ 𝐼 = ∅))
2523infeq1d 9357 . . . . 5 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < ))
2624, 25ifbieq2d 4500 . . . 4 (((𝐺𝑉𝑔 = 𝐺) ∧ 𝑖 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)}) → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
275, 26csbied 3884 . . 3 ((𝐺𝑉𝑔 = 𝐺) → {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
28 elex 3455 . . 3 (𝐺𝑉𝐺 ∈ V)
29 c0ex 11098 . . . . 5 0 ∈ V
30 ltso 11185 . . . . . 6 < Or ℝ
3130infex 9374 . . . . 5 inf(𝐼, ℝ, < ) ∈ V
3229, 31ifex 4524 . . . 4 if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V
3332a1i 11 . . 3 (𝐺𝑉 → if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V)
342, 27, 28, 33fvmptd2 6932 . 2 (𝐺𝑉 → (gEx‘𝐺) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
351, 34eqtrid 2777 1 (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  csb 3848  c0 4281  ifcif 4473  cfv 6477  (class class class)co 7341  infcinf 9320  cr 10997  0cc0 10998   < clt 11138  cn 12117  Basecbs 17112  0gc0g 17335  .gcmg 18972  gExcgex 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-mulcl 11060  ax-i2m1 11066  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-ltxr 11143  df-nn 12118  df-gex 19434
This theorem is referenced by:  gexlem1  19484  gexlem2  19487
  Copyright terms: Public domain W3C validator