![]() |
Metamath
Proof Explorer Theorem List (p. 195 of 472) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29688) |
![]() (29689-31211) |
![]() (31212-47146) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lsmless2 19401 | Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) | ||
Theorem | lsmless12 19402 | Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) | ||
Theorem | lsmidm 19403 | Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) (Proof shortened by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmlub 19404 | The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) | ||
Theorem | lsmss1 19405 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑇 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmss1b 19406 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ 𝑈 ↔ (𝑇 ⊕ 𝑈) = 𝑈)) | ||
Theorem | lsmss2 19407 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ⊆ 𝑇) → (𝑇 ⊕ 𝑈) = 𝑇) | ||
Theorem | lsmss2b 19408 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) | ||
Theorem | lsmass 19409 | Subgroup sum is associative. (Contributed by NM, 2-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑅 ⊕ 𝑇) ⊕ 𝑈) = (𝑅 ⊕ (𝑇 ⊕ 𝑈))) | ||
Theorem | mndlsmidm 19410 | Subgroup sum is idempotent for monoids. This corresponds to the observation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (𝐵 ⊕ 𝐵) = 𝐵) | ||
Theorem | lsm01 19411 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → (𝑋 ⊕ { 0 }) = 𝑋) | ||
Theorem | lsm02 19412 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } ⊕ 𝑋) = 𝑋) | ||
Theorem | subglsm 19413 | The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐴 = (LSSum‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) | ||
Theorem | lssnle 19414 | Equivalent expressions for "not less than". (chnlei 30255 analog.) (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑈))) | ||
Theorem | lsmmod 19415 | The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆 ⊆ 𝑈) → (𝑆 ⊕ (𝑇 ∩ 𝑈)) = ((𝑆 ⊕ 𝑇) ∩ 𝑈)) | ||
Theorem | lsmmod2 19416 | Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) | ||
Theorem | lsmpropd 19417* | If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.) (Revised by AV, 25-Apr-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿)) | ||
Theorem | cntzrecd 19418 | Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) | ||
Theorem | lsmcntz 19419 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) | ||
Theorem | lsmcntzr 19420 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) | ||
Theorem | lsmdisj 19421 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) | ||
Theorem | lsmdisj2 19422 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) | ||
Theorem | lsmdisj3 19423 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | ||
Theorem | lsmdisjr 19424 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) | ||
Theorem | lsmdisj2r 19425 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | ||
Theorem | lsmdisj3r 19426 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | ||
Theorem | lsmdisj2a 19427 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) | ||
Theorem | lsmdisj2b 19428 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
Theorem | lsmdisj3a 19429 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
Theorem | lsmdisj3b 19430 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
Theorem | subgdisj1 19431 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | subgdisj2 19432 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐷) | ||
Theorem | subgdisjb 19433 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5431, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | pj1fval 19434* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) | ||
Theorem | pj1val 19435* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) | ||
Theorem | pj1eu 19436* | Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ∃!𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦)) | ||
Theorem | pj1f 19437 | The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) | ||
Theorem | pj2f 19438 | The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) | ||
Theorem | pj1id 19439 | Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋))) | ||
Theorem | pj1eq 19440 | Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑇 ⊕ 𝑈)) & ⊢ (𝜑 → 𝐵 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) | ||
Theorem | pj1lid 19441 | The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) | ||
Theorem | pj1rid 19442 | The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 ) | ||
Theorem | pj1ghm 19443 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝐺)) | ||
Theorem | pj1ghm2 19444 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom (𝐺 ↾s 𝑇))) | ||
Theorem | lsmhash 19445 | The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘(𝑇 ⊕ 𝑈)) = ((♯‘𝑇) · (♯‘𝑈))) | ||
Syntax | cefg 19446 | Extend class notation with the free group equivalence relation. |
class ~FG | ||
Syntax | cfrgp 19447 | Extend class notation with the free group construction. |
class freeGrp | ||
Syntax | cvrgp 19448 | Extend class notation with free group injection. |
class varFGrp | ||
Definition | df-efg 19449* | Define the free group equivalence relation, which is the smallest equivalence relation ≈ such that for any words 𝐴, 𝐵 and formal symbol 𝑥 with inverse invg𝑥, 𝐴𝐵 ≈ 𝐴𝑥(invg𝑥)𝐵. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ ~FG = (𝑖 ∈ V ↦ ∩ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) | ||
Definition | df-frgp 19450 | Define the free group on a set 𝐼 of generators, defined as the quotient of the free monoid on 𝐼 × 2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 19449. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | ||
Definition | df-vrgp 19451* | Define the canonical injection from the generating set 𝐼 into the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖))) | ||
Theorem | efgmval 19452* | Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) | ||
Theorem | efgmf 19453* | The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) | ||
Theorem | efgmnvl 19454* | The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘𝐴)) = 𝐴) | ||
Theorem | efgrcl 19455 | Lemma for efgval 19457. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) | ||
Theorem | efglem 19456* | Lemma for efgval 19457. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) ⇒ ⊢ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) | ||
Theorem | efgval 19457* | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))} | ||
Theorem | efger 19458 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ∼ Er 𝑊 | ||
Theorem | efgi 19459 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 𝐾〉〈𝐽, (1o ∖ 𝐾)〉”〉〉)) | ||
Theorem | efgi0 19460 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) | ||
Theorem | efgi1 19461 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) | ||
Theorem | efgtf 19462* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) | ||
Theorem | efgtval 19463* | Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) | ||
Theorem | efgval2 19464* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ⊆ [𝑥]𝑟)} | ||
Theorem | efgi2 19465* | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) | ||
Theorem | efgtlen 19466* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝑋 ∈ 𝑊 ∧ 𝐴 ∈ ran (𝑇‘𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2)) | ||
Theorem | efginvrel2 19467* | The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼ ∅) | ||
Theorem | efginvrel1 19468* | The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) | ||
Theorem | efgsf 19469* | Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 | ||
Theorem | efgsdm 19470* | Elementhood in the domain of 𝑆, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | ||
Theorem | efgsval 19471* | Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) | ||
Theorem | efgsdmi 19472* | Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) | ||
Theorem | efgsval2 19473* | Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) | ||
Theorem | efgsrel 19474* | The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∼ (𝑆‘𝐹)) | ||
Theorem | efgs1 19475* | A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) | ||
Theorem | efgs1b 19476* | Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ dom 𝑆 → ((𝑆‘𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1)) | ||
Theorem | efgsp1 19477* | If 𝐹 is an extension sequence and 𝐴 is an extension of the last element of 𝐹, then 𝐹 + 〈“𝐴”〉 is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆) | ||
Theorem | efgsres 19478* | An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆) | ||
Theorem | efgsfo 19479* | For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ 𝑆:dom 𝑆–onto→𝑊 | ||
Theorem | efgredlema 19480* | The reduced word that forms the base of the sequence in efgsval 19471 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) ⇒ ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) | ||
Theorem | efgredlemf 19481* | Lemma for efgredleme 19483. (Contributed by Mario Carneiro, 4-Jun-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) ⇒ ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) | ||
Theorem | efgredlemg 19482* | Lemma for efgred 19488. (Contributed by Mario Carneiro, 4-Jun-2016.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) ⇒ ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) | ||
Theorem | efgredleme 19483* | Lemma for efgred 19488. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) & ⊢ (𝜑 → 𝐶 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) prefix 𝑄) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) ⇒ ⊢ (𝜑 → ((𝐴‘𝐾) ∈ ran (𝑇‘(𝑆‘𝐶)) ∧ (𝐵‘𝐿) ∈ ran (𝑇‘(𝑆‘𝐶)))) | ||
Theorem | efgredlemd 19484* | The reduced word that forms the base of the sequence in efgsval 19471 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) & ⊢ (𝜑 → 𝐶 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) prefix 𝑄) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) ⇒ ⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) | ||
Theorem | efgredlemc 19485* | The reduced word that forms the base of the sequence in efgsval 19471 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) ⇒ ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑄) → (𝐴‘0) = (𝐵‘0))) | ||
Theorem | efgredlemb 19486* | The reduced word that forms the base of the sequence in efgsval 19471 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | efgredlem 19487* | The reduced word that forms the base of the sequence in efgsval 19471 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | efgred 19488* | The reduced word that forms the base of the sequence in efgsval 19471 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ∧ (𝑆‘𝐴) = (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) | ||
Theorem | efgrelexlema 19489* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} ⇒ ⊢ (𝐴𝐿𝐵 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝐴})∃𝑏 ∈ (◡𝑆 “ {𝐵})(𝑎‘0) = (𝑏‘0)) | ||
Theorem | efgrelexlemb 19490* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} ⇒ ⊢ ∼ ⊆ 𝐿 | ||
Theorem | efgrelex 19491* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∼ 𝐵 → ∃𝑎 ∈ (◡𝑆 “ {𝐴})∃𝑏 ∈ (◡𝑆 “ {𝐵})(𝑎‘0) = (𝑏‘0)) | ||
Theorem | efgredeu 19492* | There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ 𝐴) | ||
Theorem | efgred2 19493* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) | ||
Theorem | efgcpbllema 19494* | Lemma for efgrelex 19491. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} ⇒ ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | ||
Theorem | efgcpbllemb 19495* | Lemma for efgrelex 19491. Show that 𝐿 is an equivalence relation containing all direct extensions of a word, so is closed under ∼. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ∼ ⊆ 𝐿) | ||
Theorem | efgcpbl 19496* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∼ 𝑌) → ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) | ||
Theorem | efgcpbl2 19497* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) | ||
Theorem | frgpval 19498 | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) | ||
Theorem | frgpcpbl 19499 | Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷)) | ||
Theorem | frgp0 19500 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |