| Metamath
Proof Explorer Theorem List (p. 195 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | symgextfo 19401* | The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–onto→𝑁) | ||
| Theorem | symgextf1o 19402* | The extension of a permutation, fixing the additional element, is a bijection. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1-onto→𝑁) | ||
| Theorem | symgextsymg 19403* | The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 ∈ (Base‘(SymGrp‘𝑁))) | ||
| Theorem | symgextres 19404* | The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) | ||
| Theorem | gsumccatsymgsn 19405 | Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) ∘ 𝑍)) | ||
| Theorem | gsmsymgrfixlem1 19406* | Lemma 1 for gsmsymgrfix 19407. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾)) | ||
| Theorem | gsmsymgrfix 19407* | The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) | ||
| Theorem | fvcosymgeq 19408* | The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | ||
| Theorem | gsmsymgreqlem1 19409* | Lemma 1 for gsmsymgreq 19411. (Contributed by AV, 26-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝐽) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝐽))) | ||
| Theorem | gsmsymgreqlem2 19410* | Lemma 2 for gsmsymgreq 19411. (Contributed by AV, 26-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) | ||
| Theorem | gsmsymgreq 19411* | Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ 𝐼 ((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) | ||
| Theorem | symgfixelq 19412* | A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝑄 ↔ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾))) | ||
| Theorem | symgfixels 19413* | The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐷 = (𝑁 ∖ {𝐾}) ⇒ ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) | ||
| Theorem | symgfixelsi 19414* | The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐷 = (𝑁 ∖ {𝐾}) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄) → (𝐹 ↾ 𝐷) ∈ 𝑆) | ||
| Theorem | symgfixf 19415* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) | ||
| Theorem | symgfixf1 19416* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) | ||
| Theorem | symgfixfolem1 19417* | Lemma 1 for symgfixfo 19418. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 ∈ 𝑄) | ||
| Theorem | symgfixfo 19418* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–onto→𝑆) | ||
| Theorem | symgfixf1o 19419* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–1-1-onto→𝑆) | ||
Transpositions are special cases of "cycles" as defined in [Rotman] p. 28: "Let
i1 , i2 , ... , ir be distinct integers
between 1 and n. If α in Sn fixes the other integers and
α(i1) = i2, α(i2) = i3,
..., α(ir-1 ) = ir, α(ir) =
i1, then α is an r-cycle. We also say that α is a
cycle of length r." and in [Rotman] p. 31: "A 2-cycle is also called
transposition.".
| ||
| Syntax | cpmtr 19420 | Syntax for the transposition generator function. |
| class pmTrsp | ||
| Definition | df-pmtr 19421* | Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | ||
| Theorem | f1omvdmvd 19422 | A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋})) | ||
| Theorem | f1omvdcnv 19423 | A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) | ||
| Theorem | mvdco 19424 | Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )) | ||
| Theorem | f1omvdconj 19425 | Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I ))) | ||
| Theorem | f1otrspeq 19426 | A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺) | ||
| Theorem | f1omvdco2 19427 | If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) | ||
| Theorem | f1omvdco3 19428 | If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ∖ I )) | ||
| Theorem | pmtrfval 19429* | The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | ||
| Theorem | pmtrval 19430* | A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) | ||
| Theorem | pmtrfv 19431 | General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) | ||
| Theorem | pmtrprfv 19432 | In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌) | ||
| Theorem | pmtrprfv3 19433 | In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍) | ||
| Theorem | pmtrf 19434 | Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) | ||
| Theorem | pmtrmvd 19435 | A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → dom ((𝑇‘𝑃) ∖ I ) = 𝑃) | ||
| Theorem | pmtrrn 19436 | Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) | ||
| Theorem | pmtrfrn 19437 | A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 & ⊢ 𝑃 = dom (𝐹 ∖ I ) ⇒ ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))) | ||
| Theorem | pmtrffv 19438 | Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 & ⊢ 𝑃 = dom (𝐹 ∖ I ) ⇒ ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) | ||
| Theorem | pmtrrn2 19439* | For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝐹 = (𝑇‘{𝑥, 𝑦}))) | ||
| Theorem | pmtrfinv 19440 | A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) | ||
| Theorem | pmtrfmvdn0 19441 | A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) | ||
| Theorem | pmtrff1o 19442 | A transposition function is a permutation. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) | ||
| Theorem | pmtrfcnv 19443 | A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) | ||
| Theorem | pmtrfb 19444 | An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷–1-1-onto→𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) | ||
| Theorem | pmtrfconj 19445 | Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∈ 𝑅) | ||
| Theorem | symgsssg 19446* | The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺)) | ||
| Theorem | symgfisg 19447* | The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺)) | ||
| Theorem | symgtrf 19448 | Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝑇 ⊆ 𝐵 | ||
| Theorem | symggen 19449* | The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝐾‘𝑇) = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) | ||
| Theorem | symggen2 19450 | A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) ⇒ ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) | ||
| Theorem | symgtrinv 19451 | To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) | ||
| Theorem | pmtr3ncomlem1 19452 | Lemma 1 for pmtr3ncom 19454. (Contributed by AV, 17-Mar-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) & ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) | ||
| Theorem | pmtr3ncomlem2 19453 | Lemma 2 for pmtr3ncom 19454. (Contributed by AV, 17-Mar-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) & ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) | ||
| Theorem | pmtr3ncom 19454* | Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇∃𝑔 ∈ ran 𝑇(𝑔 ∘ 𝑓) ≠ (𝑓 ∘ 𝑔)) | ||
| Theorem | pmtrdifellem1 19455 | Lemma 1 for pmtrdifel 19459. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) | ||
| Theorem | pmtrdifellem2 19456 | Lemma 2 for pmtrdifel 19459. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) | ||
| Theorem | pmtrdifellem3 19457* | Lemma 3 for pmtrdifel 19459. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) | ||
| Theorem | pmtrdifellem4 19458 | Lemma 4 for pmtrdifel 19459. (Contributed by AV, 28-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ ((𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (𝑆‘𝐾) = 𝐾) | ||
| Theorem | pmtrdifel 19459* | A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) | ||
| Theorem | pmtrdifwrdellem1 19460* | Lemma 1 for pmtrdifwrdel 19464. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → 𝑈 ∈ Word 𝑅) | ||
| Theorem | pmtrdifwrdellem2 19461* | Lemma 2 for pmtrdifwrdel 19464. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) = (♯‘𝑈)) | ||
| Theorem | pmtrdifwrdellem3 19462* | Lemma 3 for pmtrdifwrdel 19464. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | ||
| Theorem | pmtrdifwrdel2lem1 19463* | Lemma 1 for pmtrdifwrdel2 19465. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | ||
| Theorem | pmtrdifwrdel 19464* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) | ||
| Theorem | pmtrdifwrdel2 19465* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝐾 ∈ 𝑁 → ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)))) | ||
| Theorem | pmtrprfval 19466* | The transpositions on a pair. (Contributed by AV, 9-Dec-2018.) |
| ⊢ (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) | ||
| Theorem | pmtrprfvalrn 19467 | The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.) |
| ⊢ ran (pmTrsp‘{1, 2}) = {{〈1, 2〉, 〈2, 1〉}} | ||
| Syntax | cpsgn 19468 | Syntax for the sign of a permutation. |
| class pmSgn | ||
| Syntax | cevpm 19469 | Syntax for even permutations. |
| class pmEven | ||
| Definition | df-psgn 19470* | Define a function which takes the value 1 for even permutations and -1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
| Definition | df-evpm 19471 | Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | ||
| Theorem | psgnunilem1 19472* | Lemma for psgnuni 19478. Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑃 ∈ 𝑇) & ⊢ (𝜑 → 𝑄 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ dom (𝑃 ∖ I )) ⇒ ⊢ (𝜑 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) | ||
| Theorem | psgnunilem5 19473* | Lemma for psgnuni 19478. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) ⇒ ⊢ (𝜑 → (𝐼 + 1) ∈ (0..^𝐿)) | ||
| Theorem | psgnunilem2 19474* | Lemma for psgnuni 19478. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤‘𝑗) ∖ I )))) | ||
| Theorem | psgnunilem3 19475* | Lemma for psgnuni 19478. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | psgnunilem4 19476 | Lemma for psgnuni 19478. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = 1) | ||
| Theorem | m1expaddsub 19477 | Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) | ||
| Theorem | psgnuni 19478 | If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → 𝑋 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋))) | ||
| Theorem | psgnfval 19479* | Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnfn 19480* | Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 Fn 𝐹 | ||
| Theorem | psgndmsubg 19481 | The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → dom 𝑁 ∈ (SubGrp‘𝐺)) | ||
| Theorem | psgneldm 19482 | Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ 𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin)) | ||
| Theorem | psgneldm2 19483* | The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))) | ||
| Theorem | psgneldm2i 19484 | A sequence of transpositions describes a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) ∈ dom 𝑁) | ||
| Theorem | psgneu 19485* | A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) | ||
| Theorem | psgnval 19486* | Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnvali 19487* | A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) | ||
| Theorem | psgnvalii 19488 | Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) | ||
| Theorem | psgnpmtr 19489 | All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) | ||
| Theorem | psgn0fv0 19490 | The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.) |
| ⊢ ((pmSgn‘∅)‘∅) = 1 | ||
| Theorem | sygbasnfpfi 19491 | The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) | ||
| Theorem | psgnfvalfi 19492* | Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
| Theorem | psgnvalfi 19493* | Value of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnran 19494 | The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) | ||
| Theorem | gsmtrcl 19495 | The group sum of transpositions of a finite set is a permutation, see also psgneldm2i 19484. (Contributed by AV, 19-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) | ||
| Theorem | psgnfitr 19496* | A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝐵 ↔ ∃𝑤 ∈ Word 𝑇𝑄 = (𝐺 Σg 𝑤))) | ||
| Theorem | psgnfieu 19497* | A permutation of a finite set has exactly one parity. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵) → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑄 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) | ||
| Theorem | pmtrsn 19498 | The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.) |
| ⊢ (pmTrsp‘{𝐴}) = ∅ | ||
| Theorem | psgnsn 19499 | The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐷 = {𝐴} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) | ||
| Theorem | psgnprfval 19500* | The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
| ⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |