![]() |
Metamath
Proof Explorer Theorem List (p. 195 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pgpfi 19401* | The converse to pgpfi1 19391. A finite group is a 𝑃-group iff it has size some power of 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛)))) | ||
Theorem | pgpfi2 19402 | Alternate version of pgpfi 19401. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) | ||
Theorem | pgphash 19403 | The order of a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | ||
Theorem | isslw 19404* | The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | ||
Theorem | slwprm 19405 | Reverse closure for the first argument of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ) | ||
Theorem | slwsubg 19406 | A Sylow 𝑃-subgroup is a subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | ||
Theorem | slwispgp 19407 | Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑆 = (𝐺 ↾s 𝐾) ⇒ ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) | ||
Theorem | slwpss 19408 | A proper superset of a Sylow subgroup is not a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑆 = (𝐺 ↾s 𝐾) ⇒ ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ¬ 𝑃 pGrp 𝑆) | ||
Theorem | slwpgp 19409 | A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑆 = (𝐺 ↾s 𝐻) ⇒ ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) | ||
Theorem | pgpssslw 19410* | Every 𝑃-subgroup is contained in a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑆 = (𝐺 ↾s 𝐻) & ⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} ↦ (♯‘𝑥)) ⇒ ⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻 ⊆ 𝑘) | ||
Theorem | slwn0 19411 | Every finite group contains a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) | ||
Theorem | subgslw 19412 | A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ⊆ 𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻)) | ||
Theorem | sylow2alem1 19413* | Lemma for sylow2a 19415. An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑍) → [𝐴] ∼ = {𝐴}) | ||
Theorem | sylow2alem2 19414* | Lemma for sylow2a 19415. All the orbits which are not for fixed points have size ∣ 𝐺 ∣ / ∣ 𝐺𝑥 ∣ (where 𝐺𝑥 is the stabilizer subgroup) and thus are powers of 𝑃. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide 𝑃, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝜑 → 𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫 𝑍)(♯‘𝑧)) | ||
Theorem | sylow2a 19415* | A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝜑 → 𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍))) | ||
Theorem | sylow2blem1 19416* | Lemma for sylow2b 19419. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝐾) & ⊢ · = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋) → (𝐵 · [𝐶] ∼ ) = [(𝐵 + 𝐶)] ∼ ) | ||
Theorem | sylow2blem2 19417* | Lemma for sylow2b 19419. Left multiplication in a subgroup 𝐻 is a group action on the set of all left cosets of 𝐾. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝐾) & ⊢ · = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ⇒ ⊢ (𝜑 → · ∈ ((𝐺 ↾s 𝐻) GrpAct (𝑋 / ∼ ))) | ||
Theorem | sylow2blem3 19418* | Sylow's second theorem. Putting together the results of sylow2a 19415 and the orbit-stabilizer theorem to show that 𝑃 does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some 𝑔 ∈ 𝑋 with ℎ𝑔𝐾 = 𝑔𝐾 for all ℎ ∈ 𝐻. This implies that invg(𝑔)ℎ𝑔 ∈ 𝐾, so ℎ is in the conjugated subgroup 𝑔𝐾invg(𝑔). (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝐾) & ⊢ · = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) & ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) & ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | ||
Theorem | sylow2b 19419* | Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃↑𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) & ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | ||
Theorem | slwhash 19420 | A sylow subgroup has cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) ⇒ ⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | ||
Theorem | fislw 19421 | The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) | ||
Theorem | sylow2 19422* | Sylow's second theorem. See also sylow2b 19419 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 19421). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | ||
Theorem | sylow3lem1 19423* | Lemma for sylow3 19429, first part. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ⇒ ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) | ||
Theorem | sylow3lem2 19424* | Lemma for sylow3 19429, first part. The stabilizer of a given Sylow subgroup 𝐾 in the group action ⊕ acting on all of 𝐺 is the normalizer NG(K). (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⇒ ⊢ (𝜑 → 𝐻 = 𝑁) | ||
Theorem | sylow3lem3 19425* | Lemma for sylow3 19429, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⇒ ⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁)))) | ||
Theorem | sylow3lem4 19426* | Lemma for sylow3 19429, first part. The number of Sylow subgroups is a divisor of the size of 𝐺 reduced by the size of a Sylow subgroup of 𝐺. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⇒ ⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) | ||
Theorem | sylow3lem5 19427* | Lemma for sylow3 19429, second part. Reduce the group action of sylow3lem1 19423 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ⇒ ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) | ||
Theorem | sylow3lem6 19428* | Lemma for sylow3 19429, second part. Using the lemma sylow2a 19415, show that the number of sylow subgroups is equivalent mod 𝑃 to the number of fixed points under the group action. But 𝐾 is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ⇒ ⊢ (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) | ||
Theorem | sylow3 19429 | Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) ⇒ ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) | ||
Syntax | clsm 19430 | Extend class notation with subgroup sum. |
class LSSum | ||
Syntax | cpj1 19431 | Extend class notation with left projection. |
class proj1 | ||
Definition | df-lsm 19432* | Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014.) |
⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) | ||
Definition | df-pj1 19433* | Define the left projection function, which takes two subgroups 𝑡, 𝑢 with trivial intersection and returns a function mapping the elements of the subgroup sum 𝑡 + 𝑢 to their projections onto 𝑡. (The other projection function can be obtained by swapping the roles of 𝑡 and 𝑢.) (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) | ||
Theorem | lsmfval 19434* | The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) | ||
Theorem | lsmvalx 19435* | Subspace sum value (for a group or vector space). Extended domain version of lsmval 19444. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | ||
Theorem | lsmelvalx 19436* | Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 19445. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) | ||
Theorem | lsmelvalix 19437 | Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) | ||
Theorem | oppglsm 19438 | The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝑂 = (oppg‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇) | ||
Theorem | lsmssv 19439 | Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) | ||
Theorem | lsmless1x 19440 | Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmless2x 19441 | Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) | ||
Theorem | lsmub1x 19442 | Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmub2x 19443 | Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmval 19444* | Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | ||
Theorem | lsmelval 19445* | Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) | ||
Theorem | lsmelvali 19446 | Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmelvalm 19447* | Subgroup sum membership analogue of lsmelval 19445 using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ − = (-g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) | ||
Theorem | lsmelvalmi 19448 | Membership of vector subtraction in subgroup sum. (Contributed by NM, 27-Apr-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ − = (-g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑇) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmsubm 19449 | The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) ∈ (SubMnd‘𝐺)) | ||
Theorem | lsmsubg 19450 | The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺)) | ||
Theorem | lsmcom2 19451 | Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
Theorem | smndlsmidm 19452 | The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmub1 19453 | Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmub2 19454 | Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmunss 19455 | Union of subgroups is a subset of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmless1 19456 | Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → (𝑆 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmless2 19457 | Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) | ||
Theorem | lsmless12 19458 | Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) | ||
Theorem | lsmidm 19459 | Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) (Proof shortened by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmlub 19460 | The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) | ||
Theorem | lsmss1 19461 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑇 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmss1b 19462 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ 𝑈 ↔ (𝑇 ⊕ 𝑈) = 𝑈)) | ||
Theorem | lsmss2 19463 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ⊆ 𝑇) → (𝑇 ⊕ 𝑈) = 𝑇) | ||
Theorem | lsmss2b 19464 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) | ||
Theorem | lsmass 19465 | Subgroup sum is associative. (Contributed by NM, 2-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑅 ⊕ 𝑇) ⊕ 𝑈) = (𝑅 ⊕ (𝑇 ⊕ 𝑈))) | ||
Theorem | mndlsmidm 19466 | Subgroup sum is idempotent for monoids. This corresponds to the observation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (𝐵 ⊕ 𝐵) = 𝐵) | ||
Theorem | lsm01 19467 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → (𝑋 ⊕ { 0 }) = 𝑋) | ||
Theorem | lsm02 19468 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } ⊕ 𝑋) = 𝑋) | ||
Theorem | subglsm 19469 | The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐴 = (LSSum‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) | ||
Theorem | lssnle 19470 | Equivalent expressions for "not less than". (chnlei 30490 analog.) (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑈))) | ||
Theorem | lsmmod 19471 | The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆 ⊆ 𝑈) → (𝑆 ⊕ (𝑇 ∩ 𝑈)) = ((𝑆 ⊕ 𝑇) ∩ 𝑈)) | ||
Theorem | lsmmod2 19472 | Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) | ||
Theorem | lsmpropd 19473* | If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.) (Revised by AV, 25-Apr-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿)) | ||
Theorem | cntzrecd 19474 | Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) | ||
Theorem | lsmcntz 19475 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) | ||
Theorem | lsmcntzr 19476 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) | ||
Theorem | lsmdisj 19477 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) | ||
Theorem | lsmdisj2 19478 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) | ||
Theorem | lsmdisj3 19479 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | ||
Theorem | lsmdisjr 19480 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) | ||
Theorem | lsmdisj2r 19481 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | ||
Theorem | lsmdisj3r 19482 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | ||
Theorem | lsmdisj2a 19483 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) | ||
Theorem | lsmdisj2b 19484 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
Theorem | lsmdisj3a 19485 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
Theorem | lsmdisj3b 19486 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
Theorem | subgdisj1 19487 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | subgdisj2 19488 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐷) | ||
Theorem | subgdisjb 19489 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5438, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | pj1fval 19490* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) | ||
Theorem | pj1val 19491* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) | ||
Theorem | pj1eu 19492* | Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ∃!𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦)) | ||
Theorem | pj1f 19493 | The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) | ||
Theorem | pj2f 19494 | The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) | ||
Theorem | pj1id 19495 | Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋))) | ||
Theorem | pj1eq 19496 | Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑇 ⊕ 𝑈)) & ⊢ (𝜑 → 𝐵 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) | ||
Theorem | pj1lid 19497 | The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) | ||
Theorem | pj1rid 19498 | The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 ) | ||
Theorem | pj1ghm 19499 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝐺)) | ||
Theorem | pj1ghm2 19500 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom (𝐺 ↾s 𝑇))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |