| Metamath
Proof Explorer Theorem List (p. 195 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pmtrfcnv 19401 | A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) | ||
| Theorem | pmtrfb 19402 | An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷–1-1-onto→𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) | ||
| Theorem | pmtrfconj 19403 | Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∈ 𝑅) | ||
| Theorem | symgsssg 19404* | The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺)) | ||
| Theorem | symgfisg 19405* | The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺)) | ||
| Theorem | symgtrf 19406 | Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝑇 ⊆ 𝐵 | ||
| Theorem | symggen 19407* | The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝐾‘𝑇) = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) | ||
| Theorem | symggen2 19408 | A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) ⇒ ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) | ||
| Theorem | symgtrinv 19409 | To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) | ||
| Theorem | pmtr3ncomlem1 19410 | Lemma 1 for pmtr3ncom 19412. (Contributed by AV, 17-Mar-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) & ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) | ||
| Theorem | pmtr3ncomlem2 19411 | Lemma 2 for pmtr3ncom 19412. (Contributed by AV, 17-Mar-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) & ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) | ||
| Theorem | pmtr3ncom 19412* | Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇∃𝑔 ∈ ran 𝑇(𝑔 ∘ 𝑓) ≠ (𝑓 ∘ 𝑔)) | ||
| Theorem | pmtrdifellem1 19413 | Lemma 1 for pmtrdifel 19417. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) | ||
| Theorem | pmtrdifellem2 19414 | Lemma 2 for pmtrdifel 19417. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) | ||
| Theorem | pmtrdifellem3 19415* | Lemma 3 for pmtrdifel 19417. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) | ||
| Theorem | pmtrdifellem4 19416 | Lemma 4 for pmtrdifel 19417. (Contributed by AV, 28-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ ((𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (𝑆‘𝐾) = 𝐾) | ||
| Theorem | pmtrdifel 19417* | A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) | ||
| Theorem | pmtrdifwrdellem1 19418* | Lemma 1 for pmtrdifwrdel 19422. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → 𝑈 ∈ Word 𝑅) | ||
| Theorem | pmtrdifwrdellem2 19419* | Lemma 2 for pmtrdifwrdel 19422. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) = (♯‘𝑈)) | ||
| Theorem | pmtrdifwrdellem3 19420* | Lemma 3 for pmtrdifwrdel 19422. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | ||
| Theorem | pmtrdifwrdel2lem1 19421* | Lemma 1 for pmtrdifwrdel2 19423. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | ||
| Theorem | pmtrdifwrdel 19422* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) | ||
| Theorem | pmtrdifwrdel2 19423* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝐾 ∈ 𝑁 → ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)))) | ||
| Theorem | pmtrprfval 19424* | The transpositions on a pair. (Contributed by AV, 9-Dec-2018.) |
| ⊢ (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) | ||
| Theorem | pmtrprfvalrn 19425 | The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.) |
| ⊢ ran (pmTrsp‘{1, 2}) = {{〈1, 2〉, 〈2, 1〉}} | ||
| Syntax | cpsgn 19426 | Syntax for the sign of a permutation. |
| class pmSgn | ||
| Syntax | cevpm 19427 | Syntax for even permutations. |
| class pmEven | ||
| Definition | df-psgn 19428* | Define a function which takes the value 1 for even permutations and -1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
| Definition | df-evpm 19429 | Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | ||
| Theorem | psgnunilem1 19430* | Lemma for psgnuni 19436. Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑃 ∈ 𝑇) & ⊢ (𝜑 → 𝑄 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ dom (𝑃 ∖ I )) ⇒ ⊢ (𝜑 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) | ||
| Theorem | psgnunilem5 19431* | Lemma for psgnuni 19436. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) ⇒ ⊢ (𝜑 → (𝐼 + 1) ∈ (0..^𝐿)) | ||
| Theorem | psgnunilem2 19432* | Lemma for psgnuni 19436. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤‘𝑗) ∖ I )))) | ||
| Theorem | psgnunilem3 19433* | Lemma for psgnuni 19436. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | psgnunilem4 19434 | Lemma for psgnuni 19436. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = 1) | ||
| Theorem | m1expaddsub 19435 | Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) | ||
| Theorem | psgnuni 19436 | If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → 𝑋 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋))) | ||
| Theorem | psgnfval 19437* | Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnfn 19438* | Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 Fn 𝐹 | ||
| Theorem | psgndmsubg 19439 | The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → dom 𝑁 ∈ (SubGrp‘𝐺)) | ||
| Theorem | psgneldm 19440 | Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ 𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin)) | ||
| Theorem | psgneldm2 19441* | The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))) | ||
| Theorem | psgneldm2i 19442 | A sequence of transpositions describes a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) ∈ dom 𝑁) | ||
| Theorem | psgneu 19443* | A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) | ||
| Theorem | psgnval 19444* | Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnvali 19445* | A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) | ||
| Theorem | psgnvalii 19446 | Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) | ||
| Theorem | psgnpmtr 19447 | All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) | ||
| Theorem | psgn0fv0 19448 | The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.) |
| ⊢ ((pmSgn‘∅)‘∅) = 1 | ||
| Theorem | sygbasnfpfi 19449 | The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) | ||
| Theorem | psgnfvalfi 19450* | Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
| Theorem | psgnvalfi 19451* | Value of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnran 19452 | The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) | ||
| Theorem | gsmtrcl 19453 | The group sum of transpositions of a finite set is a permutation, see also psgneldm2i 19442. (Contributed by AV, 19-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) | ||
| Theorem | psgnfitr 19454* | A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝐵 ↔ ∃𝑤 ∈ Word 𝑇𝑄 = (𝐺 Σg 𝑤))) | ||
| Theorem | psgnfieu 19455* | A permutation of a finite set has exactly one parity. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵) → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑄 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) | ||
| Theorem | pmtrsn 19456 | The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.) |
| ⊢ (pmTrsp‘{𝐴}) = ∅ | ||
| Theorem | psgnsn 19457 | The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐷 = {𝐴} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) | ||
| Theorem | psgnprfval 19458* | The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
| ⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnprfval1 19459 | The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
| ⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 | ||
| Theorem | psgnprfval2 19460 | The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018.) |
| ⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑁‘{〈1, 2〉, 〈2, 1〉}) = -1 | ||
| Syntax | cod 19461 | Extend class notation to include the order function on the elements of a group. |
| class od | ||
| Syntax | cgex 19462 | Extend class notation to include the order function on the elements of a group. |
| class gEx | ||
| Syntax | cpgp 19463 | Extend class notation to include the class of all p-groups. |
| class pGrp | ||
| Syntax | cslw 19464 | Extend class notation to include the class of all Sylow p-subgroups of a group. |
| class pSyl | ||
| Definition | df-od 19465* | Define the order of an element in a group. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 4-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| ⊢ od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ ⦋{𝑛 ∈ ℕ ∣ (𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) | ||
| Definition | df-gex 19466* | Define the exponent of a group. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 4-Sep-2015.) (Revised by AV, 26-Sep-2020.) |
| ⊢ gEx = (𝑔 ∈ V ↦ ⦋{𝑛 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) | ||
| Definition | df-pgp 19467* | Define the set of p-groups, which are groups such that every element has a power of 𝑝 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by AV, 5-Oct-2020.) |
| ⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | ||
| Definition | df-slw 19468* | Define the set of Sylow p-subgroups of a group 𝑔. A Sylow p-subgroup is a p-group that is not a subgroup of any other p-groups in 𝑔. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) | ||
| Theorem | odfval 19469* | Value of the order function. For a shorter proof using ax-rep 5237, see odfvalALT 19470. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) Remove dependency on ax-rep 5237. (Revised by Rohan Ridenour, 17-Aug-2023.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) | ||
| Theorem | odfvalALT 19470* | Shorter proof of odfval 19469 using ax-rep 5237. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) | ||
| Theorem | odval 19471* | Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) | ||
| Theorem | odlem1 19472* | The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⇒ ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | ||
| Theorem | odcl 19473 | The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) | ||
| Theorem | odf 19474 | Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ 𝑂:𝑋⟶ℕ0 | ||
| Theorem | odid 19475 | Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) | ||
| Theorem | odlem2 19476 | Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...𝑁)) | ||
| Theorem | odmodnn0 19477 | Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) | ||
| Theorem | mndodconglem 19478 | Lemma for mndodcong 19479. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < (𝑂‘𝐴)) & ⊢ (𝜑 → 𝑁 < (𝑂‘𝐴)) & ⊢ (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 = 𝑁) | ||
| Theorem | mndodcong 19479 | If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) | ||
| Theorem | mndodcongi 19480 | If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) | ||
| Theorem | oddvdsnn0 19481 | The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) | ||
| Theorem | odnncl 19482 | If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ ℕ) | ||
| Theorem | odmod 19483 | Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) | ||
| Theorem | oddvds 19484 | The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) | ||
| Theorem | oddvdsi 19485 | Any group element is annihilated by any multiple of its order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) | ||
| Theorem | odcong 19486 | If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) | ||
| Theorem | odeq 19487* | The oddvds 19484 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁 ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))) | ||
| Theorem | odval2 19488* | A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = (℩𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑥 ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))) | ||
| Theorem | odcld 19489 | The order of a group element is always a nonnegative integer, deduction form of odcl 19473. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ0) | ||
| Theorem | odm1inv 19490 | The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) | ||
| Theorem | odmulgid 19491 | A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂‘𝐴) ∥ (𝐾 · 𝑁))) | ||
| Theorem | odmulg2 19492 | The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∥ (𝑂‘𝐴)) | ||
| Theorem | odmulg 19493 | Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · (𝑂‘(𝑁 · 𝐴)))) | ||
| Theorem | odmulgeq 19494 | A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) = (𝑂‘𝐴) ↔ (𝑁 gcd (𝑂‘𝐴)) = 1)) | ||
| Theorem | odbezout 19495* | If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴) | ||
| Theorem | od1 19496 | The order of the group identity is one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑂‘ 0 ) = 1) | ||
| Theorem | odeq1 19497 | The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) | ||
| Theorem | odinv 19498 | The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) | ||
| Theorem | odf1 19499* | The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) | ||
| Theorem | odinf 19500* | The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |