Detailed syntax breakdown of Definition df-pgp
Step | Hyp | Ref
| Expression |
1 | | cpgp 19049 |
. 2
class
pGrp |
2 | | vp |
. . . . . . 7
setvar 𝑝 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑝 |
4 | | cprime 16304 |
. . . . . 6
class
ℙ |
5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑝 ∈ ℙ |
6 | | vg |
. . . . . . 7
setvar 𝑔 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑔 |
8 | | cgrp 18492 |
. . . . . 6
class
Grp |
9 | 7, 8 | wcel 2108 |
. . . . 5
wff 𝑔 ∈ Grp |
10 | 5, 9 | wa 395 |
. . . 4
wff (𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) |
11 | | vx |
. . . . . . . . 9
setvar 𝑥 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑥 |
13 | | cod 19047 |
. . . . . . . . 9
class
od |
14 | 7, 13 | cfv 6418 |
. . . . . . . 8
class
(od‘𝑔) |
15 | 12, 14 | cfv 6418 |
. . . . . . 7
class
((od‘𝑔)‘𝑥) |
16 | | vn |
. . . . . . . . 9
setvar 𝑛 |
17 | 16 | cv 1538 |
. . . . . . . 8
class 𝑛 |
18 | | cexp 13710 |
. . . . . . . 8
class
↑ |
19 | 3, 17, 18 | co 7255 |
. . . . . . 7
class (𝑝↑𝑛) |
20 | 15, 19 | wceq 1539 |
. . . . . 6
wff
((od‘𝑔)‘𝑥) = (𝑝↑𝑛) |
21 | | cn0 12163 |
. . . . . 6
class
ℕ0 |
22 | 20, 16, 21 | wrex 3064 |
. . . . 5
wff
∃𝑛 ∈
ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) |
23 | | cbs 16840 |
. . . . . 6
class
Base |
24 | 7, 23 | cfv 6418 |
. . . . 5
class
(Base‘𝑔) |
25 | 22, 11, 24 | wral 3063 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑔)∃𝑛 ∈ ℕ0
((od‘𝑔)‘𝑥) = (𝑝↑𝑛) |
26 | 10, 25 | wa 395 |
. . 3
wff ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛)) |
27 | 26, 2, 6 | copab 5132 |
. 2
class
{〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} |
28 | 1, 27 | wceq 1539 |
1
wff pGrp =
{〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} |