Detailed syntax breakdown of Definition df-pgp
| Step | Hyp | Ref
| Expression |
| 1 | | cpgp 19512 |
. 2
class
pGrp |
| 2 | | vp |
. . . . . . 7
setvar 𝑝 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑝 |
| 4 | | cprime 16695 |
. . . . . 6
class
ℙ |
| 5 | 3, 4 | wcel 2109 |
. . . . 5
wff 𝑝 ∈ ℙ |
| 6 | | vg |
. . . . . . 7
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑔 |
| 8 | | cgrp 18921 |
. . . . . 6
class
Grp |
| 9 | 7, 8 | wcel 2109 |
. . . . 5
wff 𝑔 ∈ Grp |
| 10 | 5, 9 | wa 395 |
. . . 4
wff (𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) |
| 11 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 13 | | cod 19510 |
. . . . . . . . 9
class
od |
| 14 | 7, 13 | cfv 6536 |
. . . . . . . 8
class
(od‘𝑔) |
| 15 | 12, 14 | cfv 6536 |
. . . . . . 7
class
((od‘𝑔)‘𝑥) |
| 16 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 17 | 16 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 18 | | cexp 14084 |
. . . . . . . 8
class
↑ |
| 19 | 3, 17, 18 | co 7410 |
. . . . . . 7
class (𝑝↑𝑛) |
| 20 | 15, 19 | wceq 1540 |
. . . . . 6
wff
((od‘𝑔)‘𝑥) = (𝑝↑𝑛) |
| 21 | | cn0 12506 |
. . . . . 6
class
ℕ0 |
| 22 | 20, 16, 21 | wrex 3061 |
. . . . 5
wff
∃𝑛 ∈
ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) |
| 23 | | cbs 17233 |
. . . . . 6
class
Base |
| 24 | 7, 23 | cfv 6536 |
. . . . 5
class
(Base‘𝑔) |
| 25 | 22, 11, 24 | wral 3052 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑔)∃𝑛 ∈ ℕ0
((od‘𝑔)‘𝑥) = (𝑝↑𝑛) |
| 26 | 10, 25 | wa 395 |
. . 3
wff ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛)) |
| 27 | 26, 2, 6 | copab 5186 |
. 2
class
{〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} |
| 28 | 1, 27 | wceq 1540 |
1
wff pGrp =
{〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} |