Detailed syntax breakdown of Definition df-ghm
| Step | Hyp | Ref
| Expression |
| 1 | | cghm 19226 |
. 2
class
GrpHom |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | cgrp 18947 |
. . 3
class
Grp |
| 5 | | vw |
. . . . . . . 8
setvar 𝑤 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 7 | 3 | cv 1539 |
. . . . . . . 8
class 𝑡 |
| 8 | | cbs 17243 |
. . . . . . . 8
class
Base |
| 9 | 7, 8 | cfv 6559 |
. . . . . . 7
class
(Base‘𝑡) |
| 10 | | vg |
. . . . . . . 8
setvar 𝑔 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 12 | 6, 9, 11 | wf 6555 |
. . . . . 6
wff 𝑔:𝑤⟶(Base‘𝑡) |
| 13 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 15 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 17 | 2 | cv 1539 |
. . . . . . . . . . . 12
class 𝑠 |
| 18 | | cplusg 17293 |
. . . . . . . . . . . 12
class
+g |
| 19 | 17, 18 | cfv 6559 |
. . . . . . . . . . 11
class
(+g‘𝑠) |
| 20 | 14, 16, 19 | co 7429 |
. . . . . . . . . 10
class (𝑥(+g‘𝑠)𝑦) |
| 21 | 20, 11 | cfv 6559 |
. . . . . . . . 9
class (𝑔‘(𝑥(+g‘𝑠)𝑦)) |
| 22 | 14, 11 | cfv 6559 |
. . . . . . . . . 10
class (𝑔‘𝑥) |
| 23 | 16, 11 | cfv 6559 |
. . . . . . . . . 10
class (𝑔‘𝑦) |
| 24 | 7, 18 | cfv 6559 |
. . . . . . . . . 10
class
(+g‘𝑡) |
| 25 | 22, 23, 24 | co 7429 |
. . . . . . . . 9
class ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)) |
| 26 | 21, 25 | wceq 1540 |
. . . . . . . 8
wff (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)) |
| 27 | 26, 15, 6 | wral 3060 |
. . . . . . 7
wff
∀𝑦 ∈
𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)) |
| 28 | 27, 13, 6 | wral 3060 |
. . . . . 6
wff
∀𝑥 ∈
𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)) |
| 29 | 12, 28 | wa 395 |
. . . . 5
wff (𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦))) |
| 30 | 17, 8 | cfv 6559 |
. . . . 5
class
(Base‘𝑠) |
| 31 | 29, 5, 30 | wsbc 3787 |
. . . 4
wff
[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦))) |
| 32 | 31, 10 | cab 2713 |
. . 3
class {𝑔 ∣
[(Base‘𝑠) /
𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))} |
| 33 | 2, 3, 4, 4, 32 | cmpo 7431 |
. 2
class (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) |
| 34 | 1, 33 | wceq 1540 |
1
wff GrpHom =
(𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣
[(Base‘𝑠) /
𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) |