| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmghm | Structured version Visualization version GIF version | ||
| Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldmghm | ⊢ Rel dom GrpHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 19151 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
| 2 | 1 | reldmmpo 7525 | 1 ⊢ Rel dom GrpHom |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2708 ∀wral 3045 [wsbc 3755 dom cdm 5640 Rel wrel 5645 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Grpcgrp 18871 GrpHom cghm 19150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-dm 5650 df-oprab 7393 df-mpo 7394 df-ghm 19151 |
| This theorem is referenced by: ghmquskerco 19222 |
| Copyright terms: Public domain | W3C validator |