MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmghm Structured version   Visualization version   GIF version

Theorem reldmghm 19194
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm Rel dom GrpHom

Proof of Theorem reldmghm
Dummy variables 𝑔 𝑠 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 19193 . 2 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥𝑤𝑦𝑤 (𝑔‘(𝑥(+g𝑠)𝑦)) = ((𝑔𝑥)(+g𝑡)(𝑔𝑦)))})
21reldmmpo 7555 1 Rel dom GrpHom
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  {cab 2702  wral 3050  [wsbc 3773  dom cdm 5678  Rel wrel 5683  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17199  +gcplusg 17252  Grpcgrp 18914   GrpHom cghm 19192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-dm 5688  df-oprab 7423  df-mpo 7424  df-ghm 19193
This theorem is referenced by:  ghmquskerco  19264
  Copyright terms: Public domain W3C validator