| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmghm | Structured version Visualization version GIF version | ||
| Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldmghm | ⊢ Rel dom GrpHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 19123 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom GrpHom |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 {cab 2709 ∀wral 3047 [wsbc 3741 dom cdm 5616 Rel wrel 5621 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Grpcgrp 18843 GrpHom cghm 19122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 df-oprab 7350 df-mpo 7351 df-ghm 19123 |
| This theorem is referenced by: ghmquskerco 19194 |
| Copyright terms: Public domain | W3C validator |