| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmghm | Structured version Visualization version GIF version | ||
| Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldmghm | ⊢ Rel dom GrpHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 19127 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
| 2 | 1 | reldmmpo 7486 | 1 ⊢ Rel dom GrpHom |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 {cab 2711 ∀wral 3048 [wsbc 3737 dom cdm 5619 Rel wrel 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Grpcgrp 18848 GrpHom cghm 19126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7356 df-mpo 7357 df-ghm 19127 |
| This theorem is referenced by: ghmquskerco 19198 |
| Copyright terms: Public domain | W3C validator |