![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmghm | Structured version Visualization version GIF version |
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
reldmghm | ⊢ Rel dom GrpHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ghm 19193 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
2 | 1 | reldmmpo 7555 | 1 ⊢ Rel dom GrpHom |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 {cab 2702 ∀wral 3050 [wsbc 3773 dom cdm 5678 Rel wrel 5683 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Basecbs 17199 +gcplusg 17252 Grpcgrp 18914 GrpHom cghm 19192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-dm 5688 df-oprab 7423 df-mpo 7424 df-ghm 19193 |
This theorem is referenced by: ghmquskerco 19264 |
Copyright terms: Public domain | W3C validator |