Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmghm | Structured version Visualization version GIF version |
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
reldmghm | ⊢ Rel dom GrpHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ghm 18905 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
2 | 1 | reldmmpo 7449 | 1 ⊢ Rel dom GrpHom |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 {cab 2713 ∀wral 3061 [wsbc 3725 dom cdm 5607 Rel wrel 5612 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 +gcplusg 17036 Grpcgrp 18650 GrpHom cghm 18904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-xp 5613 df-rel 5614 df-dm 5617 df-oprab 7320 df-mpo 7321 df-ghm 18905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |