MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmghm Structured version   Visualization version   GIF version

Theorem reldmghm 18833
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm Rel dom GrpHom

Proof of Theorem reldmghm
Dummy variables 𝑔 𝑠 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 18832 . 2 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥𝑤𝑦𝑤 (𝑔‘(𝑥(+g𝑠)𝑦)) = ((𝑔𝑥)(+g𝑡)(𝑔𝑦)))})
21reldmmpo 7408 1 Rel dom GrpHom
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  {cab 2715  wral 3064  [wsbc 3716  dom cdm 5589  Rel wrel 5594  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577   GrpHom cghm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-oprab 7279  df-mpo 7280  df-ghm 18832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator