MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmghm Structured version   Visualization version   GIF version

Theorem reldmghm 19152
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm Rel dom GrpHom

Proof of Theorem reldmghm
Dummy variables 𝑔 𝑠 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 19151 . 2 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥𝑤𝑦𝑤 (𝑔‘(𝑥(+g𝑠)𝑦)) = ((𝑔𝑥)(+g𝑡)(𝑔𝑦)))})
21reldmmpo 7525 1 Rel dom GrpHom
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  {cab 2708  wral 3045  [wsbc 3755  dom cdm 5640  Rel wrel 5645  wf 6509  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  Grpcgrp 18871   GrpHom cghm 19150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-dm 5650  df-oprab 7393  df-mpo 7394  df-ghm 19151
This theorem is referenced by:  ghmquskerco  19222
  Copyright terms: Public domain W3C validator