Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghm Structured version   Visualization version   GIF version

Theorem isghm 18371
 Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w 𝑋 = (Base‘𝑆)
isghm.x 𝑌 = (Base‘𝑇)
isghm.a + = (+g𝑆)
isghm.b = (+g𝑇)
Assertion
Ref Expression
isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 18369 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
21elmpocl 7378 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3 fvex 6668 . . . . . . . 8 (Base‘𝑠) ∈ V
4 feq2 6477 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
5 raleq 3359 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
65raleqbi1dv 3357 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
74, 6anbi12d 633 . . . . . . . 8 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
83, 7sbcie 3762 . . . . . . 7 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
9 fveq2 6655 . . . . . . . . . 10 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
10 isghm.w . . . . . . . . . 10 𝑋 = (Base‘𝑆)
119, 10eqtr4di 2851 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
1211feq2d 6481 . . . . . . . 8 (𝑠 = 𝑆 → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶(Base‘𝑡)))
13 fveq2 6655 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
14 isghm.a . . . . . . . . . . . . 13 + = (+g𝑆)
1513, 14eqtr4di 2851 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = + )
1615oveqd 7162 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
1716fveqeq2d 6663 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
1811, 17raleqbidv 3355 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
1911, 18raleqbidv 3355 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
2012, 19anbi12d 633 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
218, 20syl5bb 286 . . . . . 6 (𝑠 = 𝑆 → ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
2221abbidv 2862 . . . . 5 (𝑠 = 𝑆 → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
23 fveq2 6655 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
24 isghm.x . . . . . . . . 9 𝑌 = (Base‘𝑇)
2523, 24eqtr4di 2851 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
2625feq3d 6482 . . . . . . 7 (𝑡 = 𝑇 → (𝑓:𝑋⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
27 fveq2 6655 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
28 isghm.b . . . . . . . . . . 11 = (+g𝑇)
2927, 28eqtr4di 2851 . . . . . . . . . 10 (𝑡 = 𝑇 → (+g𝑡) = )
3029oveqd 7162 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
3130eqeq2d 2809 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
32312ralbidv 3164 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3326, 32anbi12d 633 . . . . . 6 (𝑡 = 𝑇 → ((𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
3433abbidv 2862 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
3510fvexi 6669 . . . . . . 7 𝑋 ∈ V
3624fvexi 6669 . . . . . . 7 𝑌 ∈ V
37 mapex 8413 . . . . . . 7 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑓𝑓:𝑋𝑌} ∈ V)
3835, 36, 37mp2an 691 . . . . . 6 {𝑓𝑓:𝑋𝑌} ∈ V
39 simpl 486 . . . . . . 7 ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) → 𝑓:𝑋𝑌)
4039ss2abi 3996 . . . . . 6 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌}
4138, 40ssexi 5194 . . . . 5 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V
4222, 34, 1, 41ovmpo 7300 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
4342eleq2d 2875 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
44 fex 6976 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ V) → 𝐹 ∈ V)
4535, 44mpan2 690 . . . . 5 (𝐹:𝑋𝑌𝐹 ∈ V)
4645adantr 484 . . . 4 ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V)
47 feq1 6476 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
48 fveq1 6654 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
49 fveq1 6654 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
50 fveq1 6654 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
5149, 50oveq12d 7163 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
5248, 51eqeq12d 2814 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
53522ralbidv 3164 . . . . 5 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
5447, 53anbi12d 633 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
5546, 54elab3 3623 . . 3 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
5643, 55syl6bb 290 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
572, 56biadanii 821 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2776  ∀wral 3106  Vcvv 3442  [wsbc 3722  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  Basecbs 16495  +gcplusg 16577  Grpcgrp 18115   GrpHom cghm 18368 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-ghm 18369 This theorem is referenced by:  isghm3  18372  ghmgrp1  18373  ghmgrp2  18374  ghmf  18375  ghmlin  18376  isghmd  18380  idghm  18386  ghmf1o  18401  islmhm2  19824  expghm  20211  mulgghm2  20212  pi1xfr  23701  pi1coghm  23707  rhmopp  30992  isrnghm  44684
 Copyright terms: Public domain W3C validator