Detailed syntax breakdown of Definition df-gim
| Step | Hyp | Ref
| Expression |
| 1 | | cgim 19275 |
. 2
class
GrpIso |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | cgrp 18951 |
. . 3
class
Grp |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑠 |
| 6 | | cbs 17247 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Base‘𝑠) |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑡 |
| 9 | 8, 6 | cfv 6561 |
. . . . 5
class
(Base‘𝑡) |
| 10 | | vg |
. . . . . 6
setvar 𝑔 |
| 11 | 10 | cv 1539 |
. . . . 5
class 𝑔 |
| 12 | 7, 9, 11 | wf1o 6560 |
. . . 4
wff 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡) |
| 13 | | cghm 19230 |
. . . . 5
class
GrpHom |
| 14 | 5, 8, 13 | co 7431 |
. . . 4
class (𝑠 GrpHom 𝑡) |
| 15 | 12, 10, 14 | crab 3436 |
. . 3
class {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)} |
| 16 | 2, 3, 4, 4, 15 | cmpo 7433 |
. 2
class (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
| 17 | 1, 16 | wceq 1540 |
1
wff GrpIso =
(𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |