Detailed syntax breakdown of Definition df-gim
Step | Hyp | Ref
| Expression |
1 | | cgim 18918 |
. 2
class
GrpIso |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vt |
. . 3
setvar 𝑡 |
4 | | cgrp 18622 |
. . 3
class
Grp |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑠 |
6 | | cbs 16957 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6458 |
. . . . 5
class
(Base‘𝑠) |
8 | 3 | cv 1538 |
. . . . . 6
class 𝑡 |
9 | 8, 6 | cfv 6458 |
. . . . 5
class
(Base‘𝑡) |
10 | | vg |
. . . . . 6
setvar 𝑔 |
11 | 10 | cv 1538 |
. . . . 5
class 𝑔 |
12 | 7, 9, 11 | wf1o 6457 |
. . . 4
wff 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡) |
13 | | cghm 18876 |
. . . . 5
class
GrpHom |
14 | 5, 8, 13 | co 7307 |
. . . 4
class (𝑠 GrpHom 𝑡) |
15 | 12, 10, 14 | crab 3284 |
. . 3
class {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)} |
16 | 2, 3, 4, 4, 15 | cmpo 7309 |
. 2
class (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
17 | 1, 16 | wceq 1539 |
1
wff GrpIso =
(𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |