MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim Structured version   Visualization version   GIF version

Theorem isgim 18878
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
isgim.b 𝐵 = (Base‘𝑅)
isgim.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
isgim (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))

Proof of Theorem isgim
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
2 df-gim 18875 . . 3 GrpIso = (𝑎 ∈ Grp, 𝑏 ∈ Grp ↦ {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)})
3 ovex 7308 . . . 4 (𝑎 GrpHom 𝑏) ∈ V
43rabex 5256 . . 3 {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} ∈ V
5 oveq12 7284 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑎 GrpHom 𝑏) = (𝑅 GrpHom 𝑆))
6 fveq2 6774 . . . . . 6 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
7 isgim.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7eqtr4di 2796 . . . . 5 (𝑎 = 𝑅 → (Base‘𝑎) = 𝐵)
9 fveq2 6774 . . . . . 6 (𝑏 = 𝑆 → (Base‘𝑏) = (Base‘𝑆))
10 isgim.c . . . . . 6 𝐶 = (Base‘𝑆)
119, 10eqtr4di 2796 . . . . 5 (𝑏 = 𝑆 → (Base‘𝑏) = 𝐶)
12 f1oeq23 6707 . . . . 5 (((Base‘𝑎) = 𝐵 ∧ (Base‘𝑏) = 𝐶) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
138, 11, 12syl2an 596 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
145, 13rabeqbidv 3420 . . 3 ((𝑎 = 𝑅𝑏 = 𝑆) → {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} = {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶})
152, 4, 14elovmpo 7514 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
16 ghmgrp1 18836 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
17 ghmgrp2 18837 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp)
1816, 17jca 512 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
1918adantr 481 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
2019pm4.71ri 561 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
21 f1oeq1 6704 . . . . 5 (𝑐 = 𝐹 → (𝑐:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2221elrab 3624 . . . 4 (𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
2322anbi2i 623 . . 3 (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
2420, 23bitr4i 277 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
251, 15, 243bitr4i 303 1 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  Grpcgrp 18577   GrpHom cghm 18831   GrpIso cgim 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ghm 18832  df-gim 18875
This theorem is referenced by:  gimf1o  18879  gimghm  18880  isgim2  18881  invoppggim  18967  rimgim  19980  lmimgim  20327  zzngim  20760  cygznlem3  20777  pm2mpgrpiso  21966  reefgim  25609  imasgim  40925
  Copyright terms: Public domain W3C validator