Step | Hyp | Ref
| Expression |
1 | | df-3an 1087 |
. 2
⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶})) |
2 | | df-gim 18790 |
. . 3
⊢ GrpIso =
(𝑎 ∈ Grp, 𝑏 ∈ Grp ↦ {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)}) |
3 | | ovex 7288 |
. . . 4
⊢ (𝑎 GrpHom 𝑏) ∈ V |
4 | 3 | rabex 5251 |
. . 3
⊢ {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} ∈ V |
5 | | oveq12 7264 |
. . . 4
⊢ ((𝑎 = 𝑅 ∧ 𝑏 = 𝑆) → (𝑎 GrpHom 𝑏) = (𝑅 GrpHom 𝑆)) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅)) |
7 | | isgim.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
8 | 6, 7 | eqtr4di 2797 |
. . . . 5
⊢ (𝑎 = 𝑅 → (Base‘𝑎) = 𝐵) |
9 | | fveq2 6756 |
. . . . . 6
⊢ (𝑏 = 𝑆 → (Base‘𝑏) = (Base‘𝑆)) |
10 | | isgim.c |
. . . . . 6
⊢ 𝐶 = (Base‘𝑆) |
11 | 9, 10 | eqtr4di 2797 |
. . . . 5
⊢ (𝑏 = 𝑆 → (Base‘𝑏) = 𝐶) |
12 | | f1oeq23 6691 |
. . . . 5
⊢
(((Base‘𝑎) =
𝐵 ∧ (Base‘𝑏) = 𝐶) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵–1-1-onto→𝐶)) |
13 | 8, 11, 12 | syl2an 595 |
. . . 4
⊢ ((𝑎 = 𝑅 ∧ 𝑏 = 𝑆) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵–1-1-onto→𝐶)) |
14 | 5, 13 | rabeqbidv 3410 |
. . 3
⊢ ((𝑎 = 𝑅 ∧ 𝑏 = 𝑆) → {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} = {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶}) |
15 | 2, 4, 14 | elovmpo 7492 |
. 2
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶})) |
16 | | ghmgrp1 18751 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) |
17 | | ghmgrp2 18752 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp) |
18 | 16, 17 | jca 511 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp)) |
19 | 18 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp)) |
20 | 19 | pm4.71ri 560 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) |
21 | | f1oeq1 6688 |
. . . . 5
⊢ (𝑐 = 𝐹 → (𝑐:𝐵–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
22 | 21 | elrab 3617 |
. . . 4
⊢ (𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |
23 | 22 | anbi2i 622 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) |
24 | 20, 23 | bitr4i 277 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵–1-1-onto→𝐶})) |
25 | 1, 15, 24 | 3bitr4i 302 |
1
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |