MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim Structured version   Visualization version   GIF version

Theorem isgim 18404
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
isgim.b 𝐵 = (Base‘𝑅)
isgim.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
isgim (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))

Proof of Theorem isgim
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1085 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
2 df-gim 18401 . . 3 GrpIso = (𝑎 ∈ Grp, 𝑏 ∈ Grp ↦ {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)})
3 ovex 7191 . . . 4 (𝑎 GrpHom 𝑏) ∈ V
43rabex 5237 . . 3 {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} ∈ V
5 oveq12 7167 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑎 GrpHom 𝑏) = (𝑅 GrpHom 𝑆))
6 fveq2 6672 . . . . . 6 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
7 isgim.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7syl6eqr 2876 . . . . 5 (𝑎 = 𝑅 → (Base‘𝑎) = 𝐵)
9 fveq2 6672 . . . . . 6 (𝑏 = 𝑆 → (Base‘𝑏) = (Base‘𝑆))
10 isgim.c . . . . . 6 𝐶 = (Base‘𝑆)
119, 10syl6eqr 2876 . . . . 5 (𝑏 = 𝑆 → (Base‘𝑏) = 𝐶)
12 f1oeq23 6609 . . . . 5 (((Base‘𝑎) = 𝐵 ∧ (Base‘𝑏) = 𝐶) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
138, 11, 12syl2an 597 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
145, 13rabeqbidv 3487 . . 3 ((𝑎 = 𝑅𝑏 = 𝑆) → {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} = {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶})
152, 4, 14elovmpo 7392 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
16 ghmgrp1 18362 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
17 ghmgrp2 18363 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp)
1816, 17jca 514 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
1918adantr 483 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
2019pm4.71ri 563 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
21 f1oeq1 6606 . . . . 5 (𝑐 = 𝐹 → (𝑐:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2221elrab 3682 . . . 4 (𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
2322anbi2i 624 . . 3 (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
2420, 23bitr4i 280 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
251, 15, 243bitr4i 305 1 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Basecbs 16485  Grpcgrp 18105   GrpHom cghm 18357   GrpIso cgim 18399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-ghm 18358  df-gim 18401
This theorem is referenced by:  gimf1o  18405  gimghm  18406  isgim2  18407  invoppggim  18490  rimgim  19490  lmimgim  19839  zzngim  20701  cygznlem3  20718  pm2mpgrpiso  21427  reefgim  25040  imasgim  39707
  Copyright terms: Public domain W3C validator