MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimfn Structured version   Visualization version   GIF version

Theorem gimfn 18016
Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
gimfn GrpIso Fn (Grp × Grp)

Proof of Theorem gimfn
Dummy variables 𝑔 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gim 18014 . 2 GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)})
2 ovex 6910 . . 3 (𝑠 GrpHom 𝑡) ∈ V
32rabex 5007 . 2 {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)} ∈ V
41, 3fnmpt2i 7475 1 GrpIso Fn (Grp × Grp)
Colors of variables: wff setvar class
Syntax hints:  {crab 3093   × cxp 5310   Fn wfn 6096  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6878  Basecbs 16184  Grpcgrp 17738   GrpHom cghm 17970   GrpIso cgim 18012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-gim 18014
This theorem is referenced by:  brgic  18024  gicer  18031
  Copyright terms: Public domain W3C validator