| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-grlic | Structured version Visualization version GIF version | ||
| Description: Two graphs are said to be locally isomorphic iff they are connected by at least one local isomorphism. (Contributed by AV, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| df-grlic | ⊢ ≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgrlic 47989 | . 2 class ≃𝑙𝑔𝑟 | |
| 2 | cgrlim 47988 | . . . 4 class GraphLocIso | |
| 3 | 2 | ccnv 5653 | . . 3 class ◡ GraphLocIso |
| 4 | cvv 3459 | . . . 4 class V | |
| 5 | c1o 8473 | . . . 4 class 1o | |
| 6 | 4, 5 | cdif 3923 | . . 3 class (V ∖ 1o) |
| 7 | 3, 6 | cima 5657 | . 2 class (◡ GraphLocIso “ (V ∖ 1o)) |
| 8 | 1, 7 | wceq 1540 | 1 wff ≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖ 1o)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: brgrlic 48009 grlicrel 48011 |
| Copyright terms: Public domain | W3C validator |