Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brgrlic Structured version   Visualization version   GIF version

Theorem brgrlic 48009
Description: The relation "is locally isomorphic to" for graphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
brgrlic (𝑅𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅)

Proof of Theorem brgrlic
StepHypRef Expression
1 df-grlic 47993 . 2 𝑙𝑔𝑟 = ( GraphLocIso “ (V ∖ 1o))
2 grlimfn 47991 . 2 GraphLocIso Fn (V × V)
31, 2brwitnlem 8519 1 (𝑅𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2932  Vcvv 3459  c0 4308   class class class wbr 5119   × cxp 5652  (class class class)co 7405   GraphLocIso cgrlim 47988  𝑙𝑔𝑟 cgrlic 47989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-grlim 47990  df-grlic 47993
This theorem is referenced by:  brgrilci  48010  grlicrcl  48012  dfgrlic2  48013  dfgrlic3  48015  grilcbri2  48016  grlicen  48022  usgrexmpl12ngrlic  48043
  Copyright terms: Public domain W3C validator