Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimdmrel Structured version   Visualization version   GIF version

Theorem grlimdmrel 47804
Description: The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025.)
Assertion
Ref Expression
grlimdmrel Rel dom GraphLocIso

Proof of Theorem grlimdmrel
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grlim 47802 . 2 GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
21reldmmpo 7584 1 Rel dom GraphLocIso
Colors of variables: wff setvar class
Syntax hints:  wa 395  {cab 2717  wral 3067  Vcvv 3488   class class class wbr 5166  dom cdm 5700  Rel wrel 5705  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031   ClNeighbVtx cclnbgr 47692   ISubGr cisubgr 47732  𝑔𝑟 cgric 47746   GraphLocIso cgrlim 47800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-oprab 7452  df-mpo 7453  df-grlim 47802
This theorem is referenced by:  grlimprop  47808  grlimprop2  47810  grlicrcl  47824  grilcbri2  47828
  Copyright terms: Public domain W3C validator