Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimdmrel Structured version   Visualization version   GIF version

Theorem grlimdmrel 47947
Description: The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025.)
Assertion
Ref Expression
grlimdmrel Rel dom GraphLocIso

Proof of Theorem grlimdmrel
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grlim 47945 . 2 GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
21reldmmpo 7567 1 Rel dom GraphLocIso
Colors of variables: wff setvar class
Syntax hints:  wa 395  {cab 2714  wral 3061  Vcvv 3480   class class class wbr 5143  dom cdm 5685  Rel wrel 5690  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Vtxcvtx 29013   ClNeighbVtx cclnbgr 47805   ISubGr cisubgr 47846  𝑔𝑟 cgric 47862   GraphLocIso cgrlim 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-dm 5695  df-oprab 7435  df-mpo 7436  df-grlim 47945
This theorem is referenced by:  grlimprop  47951  grlimprop2  47953  grlicrcl  47967  grilcbri2  47971
  Copyright terms: Public domain W3C validator