Detailed syntax breakdown of Definition df-grpo
| Step | Hyp | Ref
| Expression |
| 1 | | cgr 30508 |
. 2
class
GrpOp |
| 2 | | vt |
. . . . . . . 8
setvar 𝑡 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 4 | 3, 3 | cxp 5683 |
. . . . . 6
class (𝑡 × 𝑡) |
| 5 | | vg |
. . . . . . 7
setvar 𝑔 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑔 |
| 7 | 4, 3, 6 | wf 6557 |
. . . . 5
wff 𝑔:(𝑡 × 𝑡)⟶𝑡 |
| 8 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 10 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 12 | 9, 11, 6 | co 7431 |
. . . . . . . . . 10
class (𝑥𝑔𝑦) |
| 13 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 14 | 13 | cv 1539 |
. . . . . . . . . 10
class 𝑧 |
| 15 | 12, 14, 6 | co 7431 |
. . . . . . . . 9
class ((𝑥𝑔𝑦)𝑔𝑧) |
| 16 | 11, 14, 6 | co 7431 |
. . . . . . . . . 10
class (𝑦𝑔𝑧) |
| 17 | 9, 16, 6 | co 7431 |
. . . . . . . . 9
class (𝑥𝑔(𝑦𝑔𝑧)) |
| 18 | 15, 17 | wceq 1540 |
. . . . . . . 8
wff ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 19 | 18, 13, 3 | wral 3061 |
. . . . . . 7
wff
∀𝑧 ∈
𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 20 | 19, 10, 3 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 21 | 20, 8, 3 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 22 | | vu |
. . . . . . . . . . 11
setvar 𝑢 |
| 23 | 22 | cv 1539 |
. . . . . . . . . 10
class 𝑢 |
| 24 | 23, 9, 6 | co 7431 |
. . . . . . . . 9
class (𝑢𝑔𝑥) |
| 25 | 24, 9 | wceq 1540 |
. . . . . . . 8
wff (𝑢𝑔𝑥) = 𝑥 |
| 26 | 11, 9, 6 | co 7431 |
. . . . . . . . . 10
class (𝑦𝑔𝑥) |
| 27 | 26, 23 | wceq 1540 |
. . . . . . . . 9
wff (𝑦𝑔𝑥) = 𝑢 |
| 28 | 27, 10, 3 | wrex 3070 |
. . . . . . . 8
wff
∃𝑦 ∈
𝑡 (𝑦𝑔𝑥) = 𝑢 |
| 29 | 25, 28 | wa 395 |
. . . . . . 7
wff ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢) |
| 30 | 29, 8, 3 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢) |
| 31 | 30, 22, 3 | wrex 3070 |
. . . . 5
wff
∃𝑢 ∈
𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢) |
| 32 | 7, 21, 31 | w3a 1087 |
. . . 4
wff (𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢)) |
| 33 | 32, 2 | wex 1779 |
. . 3
wff
∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢)) |
| 34 | 33, 5 | cab 2714 |
. 2
class {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} |
| 35 | 1, 34 | wceq 1540 |
1
wff GrpOp =
{𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} |