Detailed syntax breakdown of Definition df-gid
Step | Hyp | Ref
| Expression |
1 | | cgi 28753 |
. 2
class
GId |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vu |
. . . . . . . . 9
setvar 𝑢 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑢 |
6 | | vx |
. . . . . . . . 9
setvar 𝑥 |
7 | 6 | cv 1538 |
. . . . . . . 8
class 𝑥 |
8 | 2 | cv 1538 |
. . . . . . . 8
class 𝑔 |
9 | 5, 7, 8 | co 7255 |
. . . . . . 7
class (𝑢𝑔𝑥) |
10 | 9, 7 | wceq 1539 |
. . . . . 6
wff (𝑢𝑔𝑥) = 𝑥 |
11 | 7, 5, 8 | co 7255 |
. . . . . . 7
class (𝑥𝑔𝑢) |
12 | 11, 7 | wceq 1539 |
. . . . . 6
wff (𝑥𝑔𝑢) = 𝑥 |
13 | 10, 12 | wa 395 |
. . . . 5
wff ((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) |
14 | 8 | crn 5581 |
. . . . 5
class ran 𝑔 |
15 | 13, 6, 14 | wral 3063 |
. . . 4
wff
∀𝑥 ∈ ran
𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) |
16 | 15, 4, 14 | crio 7211 |
. . 3
class
(℩𝑢
∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) |
17 | 2, 3, 16 | cmpt 5153 |
. 2
class (𝑔 ∈ V ↦
(℩𝑢 ∈ ran
𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) |
18 | 1, 17 | wceq 1539 |
1
wff GId =
(𝑔 ∈ V ↦
(℩𝑢 ∈ ran
𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) |