Detailed syntax breakdown of Definition df-gru
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cgru 10830 | . 2
class
Univ | 
| 2 |  | vu | . . . . . 6
setvar 𝑢 | 
| 3 | 2 | cv 1539 | . . . . 5
class 𝑢 | 
| 4 | 3 | wtr 5259 | . . . 4
wff Tr 𝑢 | 
| 5 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 6 | 5 | cv 1539 | . . . . . . . 8
class 𝑥 | 
| 7 | 6 | cpw 4600 | . . . . . . 7
class 𝒫
𝑥 | 
| 8 | 7, 3 | wcel 2108 | . . . . . 6
wff 𝒫
𝑥 ∈ 𝑢 | 
| 9 |  | vy | . . . . . . . . . 10
setvar 𝑦 | 
| 10 | 9 | cv 1539 | . . . . . . . . 9
class 𝑦 | 
| 11 | 6, 10 | cpr 4628 | . . . . . . . 8
class {𝑥, 𝑦} | 
| 12 | 11, 3 | wcel 2108 | . . . . . . 7
wff {𝑥, 𝑦} ∈ 𝑢 | 
| 13 | 12, 9, 3 | wral 3061 | . . . . . 6
wff
∀𝑦 ∈
𝑢 {𝑥, 𝑦} ∈ 𝑢 | 
| 14 | 10 | crn 5686 | . . . . . . . . 9
class ran 𝑦 | 
| 15 | 14 | cuni 4907 | . . . . . . . 8
class ∪ ran 𝑦 | 
| 16 | 15, 3 | wcel 2108 | . . . . . . 7
wff ∪ ran 𝑦 ∈ 𝑢 | 
| 17 |  | cmap 8866 | . . . . . . . 8
class 
↑m | 
| 18 | 3, 6, 17 | co 7431 | . . . . . . 7
class (𝑢 ↑m 𝑥) | 
| 19 | 16, 9, 18 | wral 3061 | . . . . . 6
wff
∀𝑦 ∈
(𝑢 ↑m 𝑥)∪
ran 𝑦 ∈ 𝑢 | 
| 20 | 8, 13, 19 | w3a 1087 | . . . . 5
wff (𝒫
𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) | 
| 21 | 20, 5, 3 | wral 3061 | . . . 4
wff
∀𝑥 ∈
𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) | 
| 22 | 4, 21 | wa 395 | . . 3
wff (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢)) | 
| 23 | 22, 2 | cab 2714 | . 2
class {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))} | 
| 24 | 1, 23 | wceq 1540 | 1
wff Univ =
{𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))} |