Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elgrug | Structured version Visualization version GIF version |
Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
elgrug | ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5193 | . . 3 ⊢ (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈)) | |
2 | eleq2 2827 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈)) | |
3 | eleq2 2827 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈)) | |
4 | 3 | raleqbi1dv 3331 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
5 | oveq1 7262 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ↑m 𝑥) = (𝑈 ↑m 𝑥)) | |
6 | eleq2 2827 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (∪ ran 𝑦 ∈ 𝑢 ↔ ∪ ran 𝑦 ∈ 𝑈)) | |
7 | 5, 6 | raleqbidv 3327 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢 ↔ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
8 | 2, 4, 7 | 3anbi123d 1434 | . . . 4 ⊢ (𝑢 = 𝑈 → ((𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) ↔ (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
9 | 8 | raleqbi1dv 3331 | . . 3 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
10 | 1, 9 | anbi12d 630 | . 2 ⊢ (𝑢 = 𝑈 → ((Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢)) ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
11 | df-gru 10478 | . 2 ⊢ Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))} | |
12 | 10, 11 | elab2g 3604 | 1 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 𝒫 cpw 4530 {cpr 4560 ∪ cuni 4836 Tr wtr 5187 ran crn 5581 (class class class)co 7255 ↑m cmap 8573 Univcgru 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tr 5188 df-iota 6376 df-fv 6426 df-ov 7258 df-gru 10478 |
This theorem is referenced by: grutr 10480 grupw 10482 grupr 10484 gruurn 10485 intgru 10501 ingru 10502 grutsk1 10508 mnugrud 41791 |
Copyright terms: Public domain | W3C validator |