![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elgrug | Structured version Visualization version GIF version |
Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
elgrug | ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 4951 | . . 3 ⊢ (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈)) | |
2 | eleq2 2867 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈)) | |
3 | eleq2 2867 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈)) | |
4 | 3 | raleqbi1dv 3329 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
5 | oveq1 6885 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ↑𝑚 𝑥) = (𝑈 ↑𝑚 𝑥)) | |
6 | eleq2 2867 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (∪ ran 𝑦 ∈ 𝑢 ↔ ∪ ran 𝑦 ∈ 𝑈)) | |
7 | 5, 6 | raleqbidv 3335 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑢 ↔ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
8 | 2, 4, 7 | 3anbi123d 1561 | . . . 4 ⊢ (𝑢 = 𝑈 → ((𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑢) ↔ (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
9 | 8 | raleqbi1dv 3329 | . . 3 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
10 | 1, 9 | anbi12d 625 | . 2 ⊢ (𝑢 = 𝑈 → ((Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑢)) ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
11 | df-gru 9901 | . 2 ⊢ Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑢))} | |
12 | 10, 11 | elab2g 3545 | 1 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 𝒫 cpw 4349 {cpr 4370 ∪ cuni 4628 Tr wtr 4945 ran crn 5313 (class class class)co 6878 ↑𝑚 cmap 8095 Univcgru 9900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-tr 4946 df-iota 6064 df-fv 6109 df-ov 6881 df-gru 9901 |
This theorem is referenced by: grutr 9903 grupw 9905 grupr 9907 gruurn 9908 intgru 9924 ingru 9925 grutsk1 9931 |
Copyright terms: Public domain | W3C validator |