MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgrug Structured version   Visualization version   GIF version

Theorem elgrug 10479
Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
elgrug (𝑈𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
Distinct variable group:   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem elgrug
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 treq 5193 . . 3 (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈))
2 eleq2 2827 . . . . 5 (𝑢 = 𝑈 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑥𝑈))
3 eleq2 2827 . . . . . 6 (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈))
43raleqbi1dv 3331 . . . . 5 (𝑢 = 𝑈 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
5 oveq1 7262 . . . . . 6 (𝑢 = 𝑈 → (𝑢m 𝑥) = (𝑈m 𝑥))
6 eleq2 2827 . . . . . 6 (𝑢 = 𝑈 → ( ran 𝑦𝑢 ran 𝑦𝑈))
75, 6raleqbidv 3327 . . . . 5 (𝑢 = 𝑈 → (∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢 ↔ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
82, 4, 73anbi123d 1434 . . . 4 (𝑢 = 𝑈 → ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) ↔ (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
98raleqbi1dv 3331 . . 3 (𝑢 = 𝑈 → (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) ↔ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
101, 9anbi12d 630 . 2 (𝑢 = 𝑈 → ((Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢)) ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
11 df-gru 10478 . 2 Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢))}
1210, 11elab2g 3604 1 (𝑈𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  𝒫 cpw 4530  {cpr 4560   cuni 4836  Tr wtr 5187  ran crn 5581  (class class class)co 7255  m cmap 8573  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-tr 5188  df-iota 6376  df-fv 6426  df-ov 7258  df-gru 10478
This theorem is referenced by:  grutr  10480  grupw  10482  grupr  10484  gruurn  10485  intgru  10501  ingru  10502  grutsk1  10508  mnugrud  41791
  Copyright terms: Public domain W3C validator