MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgrug Structured version   Visualization version   GIF version

Theorem elgrug 10752
Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
elgrug (𝑈𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
Distinct variable group:   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem elgrug
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 treq 5225 . . 3 (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈))
2 eleq2 2818 . . . . 5 (𝑢 = 𝑈 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑥𝑈))
3 eleq2 2818 . . . . . 6 (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈))
43raleqbi1dv 3313 . . . . 5 (𝑢 = 𝑈 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
5 oveq1 7397 . . . . . 6 (𝑢 = 𝑈 → (𝑢m 𝑥) = (𝑈m 𝑥))
6 eleq2 2818 . . . . . 6 (𝑢 = 𝑈 → ( ran 𝑦𝑢 ran 𝑦𝑈))
75, 6raleqbidv 3321 . . . . 5 (𝑢 = 𝑈 → (∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢 ↔ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
82, 4, 73anbi123d 1438 . . . 4 (𝑢 = 𝑈 → ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) ↔ (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
98raleqbi1dv 3313 . . 3 (𝑢 = 𝑈 → (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) ↔ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
101, 9anbi12d 632 . 2 (𝑢 = 𝑈 → ((Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢)) ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
11 df-gru 10751 . 2 Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢))}
1210, 11elab2g 3650 1 (𝑈𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  𝒫 cpw 4566  {cpr 4594   cuni 4874  Tr wtr 5217  ran crn 5642  (class class class)co 7390  m cmap 8802  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-tr 5218  df-iota 6467  df-fv 6522  df-ov 7393  df-gru 10751
This theorem is referenced by:  grutr  10753  grupw  10755  grupr  10757  gruurn  10758  intgru  10774  ingru  10775  grutsk1  10781  mnugrud  44280
  Copyright terms: Public domain W3C validator