Detailed syntax breakdown of Definition df-hgmap
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | chg 41886 | . 2
class
HGMap | 
| 2 |  | vk | . . 3
setvar 𝑘 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 |  | vw | . . . 4
setvar 𝑤 | 
| 5 | 2 | cv 1538 | . . . . 5
class 𝑘 | 
| 6 |  | clh 39987 | . . . . 5
class
LHyp | 
| 7 | 5, 6 | cfv 6560 | . . . 4
class
(LHyp‘𝑘) | 
| 8 |  | va | . . . . . . . . . 10
setvar 𝑎 | 
| 9 | 8 | cv 1538 | . . . . . . . . 9
class 𝑎 | 
| 10 |  | vx | . . . . . . . . . 10
setvar 𝑥 | 
| 11 |  | vb | . . . . . . . . . . 11
setvar 𝑏 | 
| 12 | 11 | cv 1538 | . . . . . . . . . 10
class 𝑏 | 
| 13 | 10 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑥 | 
| 14 |  | vv | . . . . . . . . . . . . . . . 16
setvar 𝑣 | 
| 15 | 14 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑣 | 
| 16 |  | vu | . . . . . . . . . . . . . . . . 17
setvar 𝑢 | 
| 17 | 16 | cv 1538 | . . . . . . . . . . . . . . . 16
class 𝑢 | 
| 18 |  | cvsca 17302 | . . . . . . . . . . . . . . . 16
class 
·𝑠 | 
| 19 | 17, 18 | cfv 6560 | . . . . . . . . . . . . . . 15
class (
·𝑠 ‘𝑢) | 
| 20 | 13, 15, 19 | co 7432 | . . . . . . . . . . . . . 14
class (𝑥(
·𝑠 ‘𝑢)𝑣) | 
| 21 |  | vm | . . . . . . . . . . . . . . 15
setvar 𝑚 | 
| 22 | 21 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑚 | 
| 23 | 20, 22 | cfv 6560 | . . . . . . . . . . . . 13
class (𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) | 
| 24 |  | vy | . . . . . . . . . . . . . . 15
setvar 𝑦 | 
| 25 | 24 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑦 | 
| 26 | 15, 22 | cfv 6560 | . . . . . . . . . . . . . 14
class (𝑚‘𝑣) | 
| 27 | 4 | cv 1538 | . . . . . . . . . . . . . . . 16
class 𝑤 | 
| 28 |  | clcd 41589 | . . . . . . . . . . . . . . . . 17
class
LCDual | 
| 29 | 5, 28 | cfv 6560 | . . . . . . . . . . . . . . . 16
class
(LCDual‘𝑘) | 
| 30 | 27, 29 | cfv 6560 | . . . . . . . . . . . . . . 15
class
((LCDual‘𝑘)‘𝑤) | 
| 31 | 30, 18 | cfv 6560 | . . . . . . . . . . . . . 14
class (
·𝑠 ‘((LCDual‘𝑘)‘𝑤)) | 
| 32 | 25, 26, 31 | co 7432 | . . . . . . . . . . . . 13
class (𝑦(
·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)) | 
| 33 | 23, 32 | wceq 1539 | . . . . . . . . . . . 12
wff (𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)) | 
| 34 |  | cbs 17248 | . . . . . . . . . . . . 13
class
Base | 
| 35 | 17, 34 | cfv 6560 | . . . . . . . . . . . 12
class
(Base‘𝑢) | 
| 36 | 33, 14, 35 | wral 3060 | . . . . . . . . . . 11
wff
∀𝑣 ∈
(Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)) | 
| 37 | 36, 24, 12 | crio 7388 | . . . . . . . . . 10
class
(℩𝑦
∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))) | 
| 38 | 10, 12, 37 | cmpt 5224 | . . . . . . . . 9
class (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) | 
| 39 | 9, 38 | wcel 2107 | . . . . . . . 8
wff 𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) | 
| 40 |  | chdma 41795 | . . . . . . . . . 10
class
HDMap | 
| 41 | 5, 40 | cfv 6560 | . . . . . . . . 9
class
(HDMap‘𝑘) | 
| 42 | 27, 41 | cfv 6560 | . . . . . . . 8
class
((HDMap‘𝑘)‘𝑤) | 
| 43 | 39, 21, 42 | wsbc 3787 | . . . . . . 7
wff
[((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) | 
| 44 |  | csca 17301 | . . . . . . . . 9
class
Scalar | 
| 45 | 17, 44 | cfv 6560 | . . . . . . . 8
class
(Scalar‘𝑢) | 
| 46 | 45, 34 | cfv 6560 | . . . . . . 7
class
(Base‘(Scalar‘𝑢)) | 
| 47 | 43, 11, 46 | wsbc 3787 | . . . . . 6
wff
[(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) | 
| 48 |  | cdvh 41081 | . . . . . . . 8
class
DVecH | 
| 49 | 5, 48 | cfv 6560 | . . . . . . 7
class
(DVecH‘𝑘) | 
| 50 | 27, 49 | cfv 6560 | . . . . . 6
class
((DVecH‘𝑘)‘𝑤) | 
| 51 | 47, 16, 50 | wsbc 3787 | . . . . 5
wff
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) | 
| 52 | 51, 8 | cab 2713 | . . . 4
class {𝑎 ∣
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))} | 
| 53 | 4, 7, 52 | cmpt 5224 | . . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))}) | 
| 54 | 2, 3, 53 | cmpt 5224 | . 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) | 
| 55 | 1, 54 | wceq 1539 | 1
wff HGMap =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) |