Detailed syntax breakdown of Definition df-hgmap
Step | Hyp | Ref
| Expression |
1 | | chg 39897 |
. 2
class
HGMap |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37998 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(LHyp‘𝑘) |
8 | | va |
. . . . . . . . . 10
setvar 𝑎 |
9 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑎 |
10 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
11 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
12 | 11 | cv 1538 |
. . . . . . . . . 10
class 𝑏 |
13 | 10 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑥 |
14 | | vv |
. . . . . . . . . . . . . . . 16
setvar 𝑣 |
15 | 14 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑣 |
16 | | vu |
. . . . . . . . . . . . . . . . 17
setvar 𝑢 |
17 | 16 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑢 |
18 | | cvsca 16966 |
. . . . . . . . . . . . . . . 16
class
·𝑠 |
19 | 17, 18 | cfv 6433 |
. . . . . . . . . . . . . . 15
class (
·𝑠 ‘𝑢) |
20 | 13, 15, 19 | co 7275 |
. . . . . . . . . . . . . 14
class (𝑥(
·𝑠 ‘𝑢)𝑣) |
21 | | vm |
. . . . . . . . . . . . . . 15
setvar 𝑚 |
22 | 21 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑚 |
23 | 20, 22 | cfv 6433 |
. . . . . . . . . . . . 13
class (𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) |
24 | | vy |
. . . . . . . . . . . . . . 15
setvar 𝑦 |
25 | 24 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑦 |
26 | 15, 22 | cfv 6433 |
. . . . . . . . . . . . . 14
class (𝑚‘𝑣) |
27 | 4 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑤 |
28 | | clcd 39600 |
. . . . . . . . . . . . . . . . 17
class
LCDual |
29 | 5, 28 | cfv 6433 |
. . . . . . . . . . . . . . . 16
class
(LCDual‘𝑘) |
30 | 27, 29 | cfv 6433 |
. . . . . . . . . . . . . . 15
class
((LCDual‘𝑘)‘𝑤) |
31 | 30, 18 | cfv 6433 |
. . . . . . . . . . . . . 14
class (
·𝑠 ‘((LCDual‘𝑘)‘𝑤)) |
32 | 25, 26, 31 | co 7275 |
. . . . . . . . . . . . 13
class (𝑦(
·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)) |
33 | 23, 32 | wceq 1539 |
. . . . . . . . . . . 12
wff (𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)) |
34 | | cbs 16912 |
. . . . . . . . . . . . 13
class
Base |
35 | 17, 34 | cfv 6433 |
. . . . . . . . . . . 12
class
(Base‘𝑢) |
36 | 33, 14, 35 | wral 3064 |
. . . . . . . . . . 11
wff
∀𝑣 ∈
(Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)) |
37 | 36, 24, 12 | crio 7231 |
. . . . . . . . . 10
class
(℩𝑦
∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))) |
38 | 10, 12, 37 | cmpt 5157 |
. . . . . . . . 9
class (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) |
39 | 9, 38 | wcel 2106 |
. . . . . . . 8
wff 𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) |
40 | | chdma 39806 |
. . . . . . . . . 10
class
HDMap |
41 | 5, 40 | cfv 6433 |
. . . . . . . . 9
class
(HDMap‘𝑘) |
42 | 27, 41 | cfv 6433 |
. . . . . . . 8
class
((HDMap‘𝑘)‘𝑤) |
43 | 39, 21, 42 | wsbc 3716 |
. . . . . . 7
wff
[((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) |
44 | | csca 16965 |
. . . . . . . . 9
class
Scalar |
45 | 17, 44 | cfv 6433 |
. . . . . . . 8
class
(Scalar‘𝑢) |
46 | 45, 34 | cfv 6433 |
. . . . . . 7
class
(Base‘(Scalar‘𝑢)) |
47 | 43, 11, 46 | wsbc 3716 |
. . . . . 6
wff
[(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) |
48 | | cdvh 39092 |
. . . . . . . 8
class
DVecH |
49 | 5, 48 | cfv 6433 |
. . . . . . 7
class
(DVecH‘𝑘) |
50 | 27, 49 | cfv 6433 |
. . . . . 6
class
((DVecH‘𝑘)‘𝑤) |
51 | 47, 16, 50 | wsbc 3716 |
. . . . 5
wff
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣)))) |
52 | 51, 8 | cab 2715 |
. . . 4
class {𝑎 ∣
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))} |
53 | 4, 7, 52 | cmpt 5157 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))}) |
54 | 2, 3, 53 | cmpt 5157 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) |
55 | 1, 54 | wceq 1539 |
1
wff HGMap =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) |