Home | Metamath
Proof Explorer Theorem List (p. 409 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aomclem7 40801* | Lemma for dfac11 40803. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) | ||
Theorem | aomclem8 40802* | Lemma for dfac11 40803. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) | ||
Theorem | dfac11 40803* |
The right-hand side of this theorem (compare with ac4 10162),
sometimes
known as the "axiom of multiple choice", is a choice
equivalent.
Curiously, this statement cannot be proved without ax-reg 9281, despite
not mentioning the cumulative hierarchy in any way as most consequences
of regularity do.
This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it. A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well-ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))) | ||
Theorem | kelac1 40804* | Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵:𝑆–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ ∪ 𝐽) & ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
Theorem | kelac2lem 40805 | Lemma for kelac2 40806 and dfac21 40807: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪ 𝑆}}) ∈ Comp) | ||
Theorem | kelac2 40806* | Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (topGen‘{𝑆, {𝒫 ∪ 𝑆}}))) ∈ Comp) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
Theorem | dfac21 40807 | Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.) |
⊢ (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t‘𝑓) ∈ Comp)) | ||
Syntax | clfig 40808 | Extend class notation with the class of finitely generated left modules. |
class LFinGen | ||
Definition | df-lfig 40809 | Define the class of finitely generated left modules. Finite generation of subspaces can be intepreted using ↾s. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫 (Base‘𝑤) ∩ Fin))} | ||
Theorem | islmodfg 40810* | Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | ||
Theorem | islssfg 40811* | Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | ||
Theorem | islssfg2 40812* | Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) | ||
Theorem | islssfgi 40813 | Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝑁‘𝐵)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝑋 ∈ LFinGen) | ||
Theorem | fglmod 40814 | Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | ||
Theorem | lsmfgcl 40815 | The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐷 = (𝑊 ↾s 𝐴) & ⊢ 𝐸 = (𝑊 ↾s 𝐵) & ⊢ 𝐹 = (𝑊 ↾s (𝐴 ⊕ 𝐵)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ LFinGen) & ⊢ (𝜑 → 𝐸 ∈ LFinGen) ⇒ ⊢ (𝜑 → 𝐹 ∈ LFinGen) | ||
Syntax | clnm 40816 | Extend class notation with the class of Noetherian left modules. |
class LNoeM | ||
Definition | df-lnm 40817* | A left-module is Noetherian iff it is hereditarily finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | ||
Theorem | islnm 40818* | Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ 𝑆 = (LSubSp‘𝑀) ⇒ ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) | ||
Theorem | islnm2 40819* | Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑁 = (LSpan‘𝑀) ⇒ ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
Theorem | lnmlmod 40820 | A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | ||
Theorem | lnmlssfg 40821 | A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (𝑀 ↾s 𝑈) ⇒ ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) | ||
Theorem | lnmlsslnm 40822 | All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (𝑀 ↾s 𝑈) ⇒ ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) | ||
Theorem | lnmfg 40823 | A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) | ||
Theorem | kercvrlsm 40824 | The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ ⊕ = (LSSum‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐹 “ 𝐷) = ran 𝐹) ⇒ ⊢ (𝜑 → (𝐾 ⊕ 𝐷) = 𝐵) | ||
Theorem | lmhmfgima 40825 | A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑇 ↾s (𝐹 “ 𝐴)) & ⊢ 𝑋 = (𝑆 ↾s 𝐴) & ⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ LFinGen) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) ⇒ ⊢ (𝜑 → 𝑌 ∈ LFinGen) | ||
Theorem | lnmepi 40826 | Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) | ||
Theorem | lmhmfgsplit 40827 | If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑈 = (𝑆 ↾s 𝐾) & ⊢ 𝑉 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen) | ||
Theorem | lmhmlnmsplit 40828 | If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.) |
⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑈 = (𝑆 ↾s 𝐾) & ⊢ 𝑉 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM) | ||
Theorem | lnmlmic 40829 | Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) | ||
Theorem | pwssplit4 40830* | Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐸 = (𝑅 ↑s (𝐴 ∪ 𝐵)) & ⊢ 𝐺 = (Base‘𝐸) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = {𝑦 ∈ 𝐺 ∣ (𝑦 ↾ 𝐴) = (𝐴 × { 0 })} & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ↾ 𝐵)) & ⊢ 𝐶 = (𝑅 ↑s 𝐴) & ⊢ 𝐷 = (𝑅 ↑s 𝐵) & ⊢ 𝐿 = (𝐸 ↾s 𝐾) ⇒ ⊢ ((𝑅 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷)) | ||
Theorem | filnm 40831 | Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM) | ||
Theorem | pwslnmlem0 40832 | Zeroeth powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s ∅) ⇒ ⊢ (𝑊 ∈ LMod → 𝑌 ∈ LNoeM) | ||
Theorem | pwslnmlem1 40833* | First powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s {𝑖}) ⇒ ⊢ (𝑊 ∈ LNoeM → 𝑌 ∈ LNoeM) | ||
Theorem | pwslnmlem2 40834 | A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑋 = (𝑊 ↑s 𝐴) & ⊢ 𝑌 = (𝑊 ↑s 𝐵) & ⊢ 𝑍 = (𝑊 ↑s (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑋 ∈ LNoeM) & ⊢ (𝜑 → 𝑌 ∈ LNoeM) ⇒ ⊢ (𝜑 → 𝑍 ∈ LNoeM) | ||
Theorem | pwslnm 40835 | Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝐼) ⇒ ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
Theorem | unxpwdom3 40836* | Weaker version of unxpwdom 9278 where a function is required only to be cancellative, not an injection. 𝐷 and 𝐵 are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into 𝐴, each row must hit an element of 𝐵; by column injectivity, each row can be identified in at least one way by the 𝐵 element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015.) MOVABLE |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐷) → (𝑎 + 𝑏) ∈ (𝐴 ∪ 𝐵)) & ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐶) ∧ (𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷)) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐)) & ⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (𝑎 ∈ 𝐶 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎)) & ⊢ (𝜑 → ¬ 𝐷 ≼ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≼* (𝐷 × 𝐵)) | ||
Theorem | pwfi2f1o 40837* | The pw2f1o 8817 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) | ||
Theorem | pwfi2en 40838* | Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) | ||
Theorem | frlmpwfi 40839 | Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
⊢ 𝑅 = (ℤ/nℤ‘2) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | ||
Theorem | gicabl 40840 | Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) |
⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel)) | ||
Theorem | imasgim 40841 | A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) | ||
Theorem | isnumbasgrplem1 40842 | A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) | ||
Theorem | harn0 40843 | The Hartogs number of a set is never zero. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
⊢ (𝑆 ∈ 𝑉 → (har‘𝑆) ≠ ∅) | ||
Theorem | numinfctb 40844 | A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | ||
Theorem | isnumbasgrplem2 40845 | If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | ||
Theorem | isnumbasgrplem3 40846 | Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) | ||
Theorem | isnumbasabl 40847 | A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | ||
Theorem | isnumbasgrp 40848 | A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) | ||
Theorem | dfacbasgrp 40849 | A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) | ||
Syntax | clnr 40850 | Extend class notation with the class of left Noetherian rings. |
class LNoeR | ||
Definition | df-lnr 40851 | A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | ||
Theorem | islnr 40852 | Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) | ||
Theorem | lnrring 40853 | Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐴 ∈ LNoeR → 𝐴 ∈ Ring) | ||
Theorem | lnrlnm 40854 | Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM) | ||
Theorem | islnr2 40855* | Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
Theorem | islnr3 40856 | Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) | ||
Theorem | lnr2i 40857* | Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) | ||
Theorem | lpirlnr 40858 | Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) | ||
Theorem | lnrfrlm 40859 | Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
⊢ 𝑌 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
Theorem | lnrfg 40860 | Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) | ||
Theorem | lnrfgtr 40861 | A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑈 = (LSubSp‘𝑀) & ⊢ 𝑁 = (𝑀 ↾s 𝑃) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃 ∈ 𝑈) → 𝑁 ∈ LFinGen) | ||
Syntax | cldgis 40862 | The leading ideal sequence used in the Hilbert Basis Theorem. |
class ldgIdlSeq | ||
Definition | df-ldgis 40863* | Define a function which carries polynomial ideals to the sequence of coefficient ideals of leading coefficients of degree- 𝑥 elements in the polynomial ideal. The proof that this map is strictly monotone is the core of the Hilbert Basis Theorem hbt 40871. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) | ||
Theorem | hbtlem1 40864* | Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) | ||
Theorem | hbtlem2 40865 | Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ 𝑇) | ||
Theorem | hbtlem7 40866 | Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼):ℕ0⟶𝑇) | ||
Theorem | hbtlem4 40867 | The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐼)‘𝑌)) | ||
Theorem | hbtlem3 40868 | The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) | ||
Theorem | hbtlem5 40869* | The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
Theorem | hbtlem6 40870* | There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ LNoeR) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | ||
Theorem | hbt 40871 | The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR) | ||
Syntax | cmnc 40872 | Extend class notation with the class of monic polynomials. |
class Monic | ||
Syntax | cplylt 40873 | Extend class notatin with the class of limited-degree polynomials. |
class Poly< | ||
Definition | df-mnc 40874* | Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) | ||
Definition | df-plylt 40875* | Define the class of limited-degree polynomials. (Contributed by Stefan O'Rear, 8-Dec-2014.) |
⊢ Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨ (deg‘𝑝) < 𝑥)}) | ||
Theorem | dgrsub2 40876 | Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁 ∧ 𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹 ∘f − 𝐺)) < 𝑁) | ||
Theorem | elmnc 40877 | Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) | ||
Theorem | mncply 40878 | A monic polynomial is a polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ∈ (Poly‘𝑆)) | ||
Theorem | mnccoe 40879 | A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1) | ||
Theorem | mncn0 40880 | A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) | ||
Syntax | cdgraa 40881 | Extend class notation to include the degree function for algebraic numbers. |
class degAA | ||
Syntax | cmpaa 40882 | Extend class notation to include the minimal polynomial for an algebraic number. |
class minPolyAA | ||
Definition | df-dgraa 40883* | Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
⊢ degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) | ||
Definition | df-mpaa 40884* | Define the minimal polynomial of an algebraic number as the unique monic polynomial which achieves the minimum of degAA. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ minPolyAA = (𝑥 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) | ||
Theorem | dgraaval 40885* | Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) | ||
Theorem | dgraalem 40886* | Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
⊢ (𝐴 ∈ 𝔸 → ((degAA‘𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) | ||
Theorem | dgraacl 40887 | Closure of the degree function on algebraic numbers. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | ||
Theorem | dgraaf 40888 | Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
⊢ degAA:𝔸⟶ℕ | ||
Theorem | dgraaub 40889 | Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | ||
Theorem | dgraa0p 40890 | A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) | ||
Theorem | mpaaeu 40891* | An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | ||
Theorem | mpaaval 40892* | Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | ||
Theorem | mpaalem 40893 | Properties of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1))) | ||
Theorem | mpaacl 40894 | Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) ∈ (Poly‘ℚ)) | ||
Theorem | mpaadgr 40895 | Minimal polynomial has degree the degree of the number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴)) | ||
Theorem | mpaaroot 40896 | The minimal polynomial of an algebraic number has the number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴)‘𝐴) = 0) | ||
Theorem | mpaamn 40897 | Minimal polynomial is monic. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1) | ||
Syntax | citgo 40898 | Extend class notation with the integral-over predicate. |
class IntgOver | ||
Syntax | cza 40899 | Extend class notation with the class of algebraic integers. |
class ℤ | ||
Definition | df-itgo 40900* | A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 40903. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |