Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapffval Structured version   Visualization version   GIF version

Theorem hgmapffval 41413
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypothesis
Ref Expression
hgmapval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
hgmapffval (𝐾 ∈ 𝑋 β†’ (HGMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))}))
Distinct variable groups:   𝑀,𝐻   π‘Ž,𝑏,π‘š,𝑒,𝑣,𝑀,π‘₯,𝑦,𝐾
Allowed substitution hints:   𝐻(π‘₯,𝑦,𝑣,𝑒,π‘š,π‘Ž,𝑏)   𝑋(π‘₯,𝑦,𝑀,𝑣,𝑒,π‘š,π‘Ž,𝑏)

Proof of Theorem hgmapffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐾 ∈ 𝑋 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 hgmapval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2783 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (DVecHβ€˜π‘˜) = (DVecHβ€˜πΎ))
65fveq1d 6893 . . . . . 6 (π‘˜ = 𝐾 β†’ ((DVecHβ€˜π‘˜)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘€))
7 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (HDMapβ€˜π‘˜) = (HDMapβ€˜πΎ))
87fveq1d 6893 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((HDMapβ€˜π‘˜)β€˜π‘€) = ((HDMapβ€˜πΎ)β€˜π‘€))
9 fveq2 6891 . . . . . . . . . . . . . . . 16 (π‘˜ = 𝐾 β†’ (LCDualβ€˜π‘˜) = (LCDualβ€˜πΎ))
109fveq1d 6893 . . . . . . . . . . . . . . 15 (π‘˜ = 𝐾 β†’ ((LCDualβ€˜π‘˜)β€˜π‘€) = ((LCDualβ€˜πΎ)β€˜π‘€))
1110fveq2d 6895 . . . . . . . . . . . . . 14 (π‘˜ = 𝐾 β†’ ( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€)) = ( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€)))
1211oveqd 7432 . . . . . . . . . . . . 13 (π‘˜ = 𝐾 β†’ (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))
1312eqeq2d 2736 . . . . . . . . . . . 12 (π‘˜ = 𝐾 β†’ ((π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)) ↔ (π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))
1413ralbidv 3168 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)) ↔ βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))
1514riotabidv 7373 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£))) = (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))
1615mpteq2dv 5245 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)))) = (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))))
1716eleq2d 2811 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))))
188, 17sbceqbid 3776 . . . . . . 7 (π‘˜ = 𝐾 β†’ ([((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ [((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))))
1918sbcbidv 3829 . . . . . 6 (π‘˜ = 𝐾 β†’ ([(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ [(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))))
206, 19sbceqbid 3776 . . . . 5 (π‘˜ = 𝐾 β†’ ([((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))))
2120abbidv 2794 . . . 4 (π‘˜ = 𝐾 β†’ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£))))} = {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))})
224, 21mpteq12dv 5234 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£))))}) = (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))}))
23 df-hgmap 41412 . . 3 HGMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£))))}))
2422, 23, 3mptfvmpt 7235 . 2 (𝐾 ∈ V β†’ (HGMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))}))
251, 24syl 17 1 (𝐾 ∈ 𝑋 β†’ (HGMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {cab 2702  βˆ€wral 3051  Vcvv 3463  [wsbc 3769   ↦ cmpt 5226  β€˜cfv 6542  β„©crio 7370  (class class class)co 7415  Basecbs 17177  Scalarcsca 17233   ·𝑠 cvsca 17234  LHypclh 39512  DVecHcdvh 40606  LCDualclcd 41114  HDMapchdma 41320  HGMapchg 41411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-hgmap 41412
This theorem is referenced by:  hgmapfval  41414
  Copyright terms: Public domain W3C validator