Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapffval Structured version   Visualization version   GIF version

Theorem hgmapffval 41842
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypothesis
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
hgmapffval (𝐾𝑋 → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
Distinct variable groups:   𝑤,𝐻   𝑎,𝑏,𝑚,𝑢,𝑣,𝑤,𝑥,𝑦,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑦,𝑣,𝑢,𝑚,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑤,𝑣,𝑢,𝑚,𝑎,𝑏)

Proof of Theorem hgmapffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝑋𝐾 ∈ V)
2 fveq2 6920 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 hgmapval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2798 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6920 . . . . . . 7 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
65fveq1d 6922 . . . . . 6 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
7 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝐾 → (HDMap‘𝑘) = (HDMap‘𝐾))
87fveq1d 6922 . . . . . . . 8 (𝑘 = 𝐾 → ((HDMap‘𝑘)‘𝑤) = ((HDMap‘𝐾)‘𝑤))
9 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (LCDual‘𝑘) = (LCDual‘𝐾))
109fveq1d 6922 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → ((LCDual‘𝑘)‘𝑤) = ((LCDual‘𝐾)‘𝑤))
1110fveq2d 6924 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → ( ·𝑠 ‘((LCDual‘𝑘)‘𝑤)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑤)))
1211oveqd 7465 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))
1312eqeq2d 2751 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)) ↔ (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))
1413ralbidv 3184 . . . . . . . . . . 11 (𝑘 = 𝐾 → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))
1514riotabidv 7406 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣))) = (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))
1615mpteq2dv 5268 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)))) = (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))))
1716eleq2d 2830 . . . . . . . 8 (𝑘 = 𝐾 → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))))
188, 17sbceqbid 3811 . . . . . . 7 (𝑘 = 𝐾 → ([((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)))) ↔ [((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))))
1918sbcbidv 3864 . . . . . 6 (𝑘 = 𝐾 → ([(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)))) ↔ [(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))))
206, 19sbceqbid 3811 . . . . 5 (𝑘 = 𝐾 → ([((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣)))) ↔ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))))
2120abbidv 2811 . . . 4 (𝑘 = 𝐾 → {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣))))} = {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})
224, 21mpteq12dv 5257 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣))))}) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
23 df-hgmap 41841 . . 3 HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣))))}))
2422, 23, 3mptfvmpt 7265 . 2 (𝐾 ∈ V → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
251, 24syl 17 1 (𝐾𝑋 → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  [wsbc 3804  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  LHypclh 39941  DVecHcdvh 41035  LCDualclcd 41543  HDMapchdma 41749  HGMapchg 41840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-hgmap 41841
This theorem is referenced by:  hgmapfval  41843
  Copyright terms: Public domain W3C validator