MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmoval Structured version   Visualization version   GIF version

Theorem hmoval 29172
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
hmoval (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Distinct variable groups:   𝑡,𝐴   𝑡,𝑈
Allowed substitution hint:   𝐻(𝑡)

Proof of Theorem hmoval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . 2 𝐻 = (HmOp‘𝑈)
2 oveq12 7284 . . . . . . 7 ((𝑢 = 𝑈𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈))
32anidms 567 . . . . . 6 (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈))
4 hmoval.9 . . . . . 6 𝐴 = (𝑈adj𝑈)
53, 4eqtr4di 2796 . . . . 5 (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴)
65dmeqd 5814 . . . 4 (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴)
75fveq1d 6776 . . . . 5 (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴𝑡))
87eqeq1d 2740 . . . 4 (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴𝑡) = 𝑡))
96, 8rabeqbidv 3420 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
10 df-hmo 29113 . . 3 HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡})
11 ovex 7308 . . . . . 6 (𝑈adj𝑈) ∈ V
124, 11eqeltri 2835 . . . . 5 𝐴 ∈ V
1312dmex 7758 . . . 4 dom 𝐴 ∈ V
1413rabex 5256 . . 3 {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ∈ V
159, 10, 14fvmpt 6875 . 2 (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
161, 15eqtrid 2790 1 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  dom cdm 5589  cfv 6433  (class class class)co 7275  NrmCVeccnv 28946  adjcaj 29110  HmOpchmo 29111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-hmo 29113
This theorem is referenced by:  ishmo  29173
  Copyright terms: Public domain W3C validator