![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmoval | Structured version Visualization version GIF version |
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
Ref | Expression |
---|---|
hmoval | ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoval.8 | . 2 ⊢ 𝐻 = (HmOp‘𝑈) | |
2 | oveq12 7420 | . . . . . . 7 ⊢ ((𝑢 = 𝑈 ∧ 𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈)) | |
3 | 2 | anidms 565 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈)) |
4 | hmoval.9 | . . . . . 6 ⊢ 𝐴 = (𝑈adj𝑈) | |
5 | 3, 4 | eqtr4di 2788 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴) |
6 | 5 | dmeqd 5904 | . . . 4 ⊢ (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴) |
7 | 5 | fveq1d 6892 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴‘𝑡)) |
8 | 7 | eqeq1d 2732 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴‘𝑡) = 𝑡)) |
9 | 6, 8 | rabeqbidv 3447 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
10 | df-hmo 30271 | . . 3 ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | |
11 | ovex 7444 | . . . . . 6 ⊢ (𝑈adj𝑈) ∈ V | |
12 | 4, 11 | eqeltri 2827 | . . . . 5 ⊢ 𝐴 ∈ V |
13 | 12 | dmex 7904 | . . . 4 ⊢ dom 𝐴 ∈ V |
14 | 13 | rabex 5331 | . . 3 ⊢ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ∈ V |
15 | 9, 10, 14 | fvmpt 6997 | . 2 ⊢ (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
16 | 1, 15 | eqtrid 2782 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 {crab 3430 Vcvv 3472 dom cdm 5675 ‘cfv 6542 (class class class)co 7411 NrmCVeccnv 30104 adjcaj 30268 HmOpchmo 30269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-hmo 30271 |
This theorem is referenced by: ishmo 30331 |
Copyright terms: Public domain | W3C validator |