MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmoval Structured version   Visualization version   GIF version

Theorem hmoval 30739
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
hmoval (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Distinct variable groups:   𝑡,𝐴   𝑡,𝑈
Allowed substitution hint:   𝐻(𝑡)

Proof of Theorem hmoval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . 2 𝐻 = (HmOp‘𝑈)
2 oveq12 7396 . . . . . . 7 ((𝑢 = 𝑈𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈))
32anidms 566 . . . . . 6 (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈))
4 hmoval.9 . . . . . 6 𝐴 = (𝑈adj𝑈)
53, 4eqtr4di 2782 . . . . 5 (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴)
65dmeqd 5869 . . . 4 (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴)
75fveq1d 6860 . . . . 5 (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴𝑡))
87eqeq1d 2731 . . . 4 (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴𝑡) = 𝑡))
96, 8rabeqbidv 3424 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
10 df-hmo 30680 . . 3 HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡})
11 ovex 7420 . . . . . 6 (𝑈adj𝑈) ∈ V
124, 11eqeltri 2824 . . . . 5 𝐴 ∈ V
1312dmex 7885 . . . 4 dom 𝐴 ∈ V
1413rabex 5294 . . 3 {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ∈ V
159, 10, 14fvmpt 6968 . 2 (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
161, 15eqtrid 2776 1 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  dom cdm 5638  cfv 6511  (class class class)co 7387  NrmCVeccnv 30513  adjcaj 30677  HmOpchmo 30678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-hmo 30680
This theorem is referenced by:  ishmo  30740
  Copyright terms: Public domain W3C validator