| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmoval | Structured version Visualization version GIF version | ||
| Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
| hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
| Ref | Expression |
|---|---|
| hmoval | ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | . 2 ⊢ 𝐻 = (HmOp‘𝑈) | |
| 2 | oveq12 7362 | . . . . . . 7 ⊢ ((𝑢 = 𝑈 ∧ 𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈)) | |
| 3 | 2 | anidms 566 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈)) |
| 4 | hmoval.9 | . . . . . 6 ⊢ 𝐴 = (𝑈adj𝑈) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴) |
| 6 | 5 | dmeqd 5852 | . . . 4 ⊢ (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴) |
| 7 | 5 | fveq1d 6828 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴‘𝑡)) |
| 8 | 7 | eqeq1d 2731 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴‘𝑡) = 𝑡)) |
| 9 | 6, 8 | rabeqbidv 3415 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| 10 | df-hmo 30713 | . . 3 ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | |
| 11 | ovex 7386 | . . . . . 6 ⊢ (𝑈adj𝑈) ∈ V | |
| 12 | 4, 11 | eqeltri 2824 | . . . . 5 ⊢ 𝐴 ∈ V |
| 13 | 12 | dmex 7849 | . . . 4 ⊢ dom 𝐴 ∈ V |
| 14 | 13 | rabex 5281 | . . 3 ⊢ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ∈ V |
| 15 | 9, 10, 14 | fvmpt 6934 | . 2 ⊢ (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| 16 | 1, 15 | eqtrid 2776 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 NrmCVeccnv 30546 adjcaj 30710 HmOpchmo 30711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-hmo 30713 |
| This theorem is referenced by: ishmo 30773 |
| Copyright terms: Public domain | W3C validator |