MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmoval Structured version   Visualization version   GIF version

Theorem hmoval 30829
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
hmoval (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Distinct variable groups:   𝑡,𝐴   𝑡,𝑈
Allowed substitution hint:   𝐻(𝑡)

Proof of Theorem hmoval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . 2 𝐻 = (HmOp‘𝑈)
2 oveq12 7440 . . . . . . 7 ((𝑢 = 𝑈𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈))
32anidms 566 . . . . . 6 (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈))
4 hmoval.9 . . . . . 6 𝐴 = (𝑈adj𝑈)
53, 4eqtr4di 2795 . . . . 5 (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴)
65dmeqd 5916 . . . 4 (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴)
75fveq1d 6908 . . . . 5 (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴𝑡))
87eqeq1d 2739 . . . 4 (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴𝑡) = 𝑡))
96, 8rabeqbidv 3455 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
10 df-hmo 30770 . . 3 HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡})
11 ovex 7464 . . . . . 6 (𝑈adj𝑈) ∈ V
124, 11eqeltri 2837 . . . . 5 𝐴 ∈ V
1312dmex 7931 . . . 4 dom 𝐴 ∈ V
1413rabex 5339 . . 3 {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ∈ V
159, 10, 14fvmpt 7016 . 2 (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
161, 15eqtrid 2789 1 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  dom cdm 5685  cfv 6561  (class class class)co 7431  NrmCVeccnv 30603  adjcaj 30767  HmOpchmo 30768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-hmo 30770
This theorem is referenced by:  ishmo  30830
  Copyright terms: Public domain W3C validator