![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmoval | Structured version Visualization version GIF version |
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
Ref | Expression |
---|---|
hmoval | ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoval.8 | . 2 ⊢ 𝐻 = (HmOp‘𝑈) | |
2 | oveq12 7435 | . . . . . . 7 ⊢ ((𝑢 = 𝑈 ∧ 𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈)) | |
3 | 2 | anidms 565 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈)) |
4 | hmoval.9 | . . . . . 6 ⊢ 𝐴 = (𝑈adj𝑈) | |
5 | 3, 4 | eqtr4di 2784 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴) |
6 | 5 | dmeqd 5914 | . . . 4 ⊢ (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴) |
7 | 5 | fveq1d 6905 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴‘𝑡)) |
8 | 7 | eqeq1d 2728 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴‘𝑡) = 𝑡)) |
9 | 6, 8 | rabeqbidv 3437 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
10 | df-hmo 30687 | . . 3 ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | |
11 | ovex 7459 | . . . . . 6 ⊢ (𝑈adj𝑈) ∈ V | |
12 | 4, 11 | eqeltri 2822 | . . . . 5 ⊢ 𝐴 ∈ V |
13 | 12 | dmex 7924 | . . . 4 ⊢ dom 𝐴 ∈ V |
14 | 13 | rabex 5341 | . . 3 ⊢ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ∈ V |
15 | 9, 10, 14 | fvmpt 7011 | . 2 ⊢ (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
16 | 1, 15 | eqtrid 2778 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 dom cdm 5684 ‘cfv 6556 (class class class)co 7426 NrmCVeccnv 30520 adjcaj 30684 HmOpchmo 30685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6508 df-fun 6558 df-fv 6564 df-ov 7429 df-hmo 30687 |
This theorem is referenced by: ishmo 30747 |
Copyright terms: Public domain | W3C validator |