Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmoval | Structured version Visualization version GIF version |
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
Ref | Expression |
---|---|
hmoval | ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoval.8 | . 2 ⊢ 𝐻 = (HmOp‘𝑈) | |
2 | oveq12 7284 | . . . . . . 7 ⊢ ((𝑢 = 𝑈 ∧ 𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈)) | |
3 | 2 | anidms 567 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈)) |
4 | hmoval.9 | . . . . . 6 ⊢ 𝐴 = (𝑈adj𝑈) | |
5 | 3, 4 | eqtr4di 2796 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴) |
6 | 5 | dmeqd 5814 | . . . 4 ⊢ (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴) |
7 | 5 | fveq1d 6776 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴‘𝑡)) |
8 | 7 | eqeq1d 2740 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴‘𝑡) = 𝑡)) |
9 | 6, 8 | rabeqbidv 3420 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
10 | df-hmo 29113 | . . 3 ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | |
11 | ovex 7308 | . . . . . 6 ⊢ (𝑈adj𝑈) ∈ V | |
12 | 4, 11 | eqeltri 2835 | . . . . 5 ⊢ 𝐴 ∈ V |
13 | 12 | dmex 7758 | . . . 4 ⊢ dom 𝐴 ∈ V |
14 | 13 | rabex 5256 | . . 3 ⊢ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ∈ V |
15 | 9, 10, 14 | fvmpt 6875 | . 2 ⊢ (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
16 | 1, 15 | eqtrid 2790 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 NrmCVeccnv 28946 adjcaj 29110 HmOpchmo 29111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-hmo 29113 |
This theorem is referenced by: ishmo 29173 |
Copyright terms: Public domain | W3C validator |