| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmoval | Structured version Visualization version GIF version | ||
| Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
| hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
| Ref | Expression |
|---|---|
| hmoval | ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | . 2 ⊢ 𝐻 = (HmOp‘𝑈) | |
| 2 | oveq12 7350 | . . . . . . 7 ⊢ ((𝑢 = 𝑈 ∧ 𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈)) | |
| 3 | 2 | anidms 566 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈)) |
| 4 | hmoval.9 | . . . . . 6 ⊢ 𝐴 = (𝑈adj𝑈) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴) |
| 6 | 5 | dmeqd 5840 | . . . 4 ⊢ (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴) |
| 7 | 5 | fveq1d 6819 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴‘𝑡)) |
| 8 | 7 | eqeq1d 2733 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴‘𝑡) = 𝑡)) |
| 9 | 6, 8 | rabeqbidv 3413 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| 10 | df-hmo 30723 | . . 3 ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | |
| 11 | ovex 7374 | . . . . . 6 ⊢ (𝑈adj𝑈) ∈ V | |
| 12 | 4, 11 | eqeltri 2827 | . . . . 5 ⊢ 𝐴 ∈ V |
| 13 | 12 | dmex 7834 | . . . 4 ⊢ dom 𝐴 ∈ V |
| 14 | 13 | rabex 5272 | . . 3 ⊢ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ∈ V |
| 15 | 9, 10, 14 | fvmpt 6924 | . 2 ⊢ (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| 16 | 1, 15 | eqtrid 2778 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 dom cdm 5611 ‘cfv 6476 (class class class)co 7341 NrmCVeccnv 30556 adjcaj 30720 HmOpchmo 30721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-hmo 30723 |
| This theorem is referenced by: ishmo 30783 |
| Copyright terms: Public domain | W3C validator |