MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmoval Structured version   Visualization version   GIF version

Theorem hmoval 30746
Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
hmoval (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Distinct variable groups:   𝑡,𝐴   𝑡,𝑈
Allowed substitution hint:   𝐻(𝑡)

Proof of Theorem hmoval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . 2 𝐻 = (HmOp‘𝑈)
2 oveq12 7435 . . . . . . 7 ((𝑢 = 𝑈𝑢 = 𝑈) → (𝑢adj𝑢) = (𝑈adj𝑈))
32anidms 565 . . . . . 6 (𝑢 = 𝑈 → (𝑢adj𝑢) = (𝑈adj𝑈))
4 hmoval.9 . . . . . 6 𝐴 = (𝑈adj𝑈)
53, 4eqtr4di 2784 . . . . 5 (𝑢 = 𝑈 → (𝑢adj𝑢) = 𝐴)
65dmeqd 5914 . . . 4 (𝑢 = 𝑈 → dom (𝑢adj𝑢) = dom 𝐴)
75fveq1d 6905 . . . . 5 (𝑢 = 𝑈 → ((𝑢adj𝑢)‘𝑡) = (𝐴𝑡))
87eqeq1d 2728 . . . 4 (𝑢 = 𝑈 → (((𝑢adj𝑢)‘𝑡) = 𝑡 ↔ (𝐴𝑡) = 𝑡))
96, 8rabeqbidv 3437 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
10 df-hmo 30687 . . 3 HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡})
11 ovex 7459 . . . . . 6 (𝑈adj𝑈) ∈ V
124, 11eqeltri 2822 . . . . 5 𝐴 ∈ V
1312dmex 7924 . . . 4 dom 𝐴 ∈ V
1413rabex 5341 . . 3 {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ∈ V
159, 10, 14fvmpt 7011 . 2 (𝑈 ∈ NrmCVec → (HmOp‘𝑈) = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
161, 15eqtrid 2778 1 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  dom cdm 5684  cfv 6556  (class class class)co 7426  NrmCVeccnv 30520  adjcaj 30684  HmOpchmo 30685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6508  df-fun 6558  df-fv 6564  df-ov 7429  df-hmo 30687
This theorem is referenced by:  ishmo  30747
  Copyright terms: Public domain W3C validator