MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoval Structured version   Visualization version   GIF version

Theorem lnoval 29736
Description: The set of linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
lnoval.2 π‘Œ = (BaseSetβ€˜π‘Š)
lnoval.3 𝐺 = ( +𝑣 β€˜π‘ˆ)
lnoval.4 𝐻 = ( +𝑣 β€˜π‘Š)
lnoval.5 𝑅 = ( ·𝑠OLD β€˜π‘ˆ)
lnoval.6 𝑆 = ( ·𝑠OLD β€˜π‘Š)
lnoval.7 𝐿 = (π‘ˆ LnOp π‘Š)
Assertion
Ref Expression
lnoval ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝐿 = {𝑑 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))})
Distinct variable groups:   π‘₯,𝑑,𝑦,𝑧,π‘ˆ   𝑑,π‘Š,π‘₯,𝑦,𝑧   𝑑,𝑋,𝑦,𝑧   𝑑,π‘Œ   𝑑,𝐺   𝑑,𝑅   𝑑,𝐻   𝑑,𝑆
Allowed substitution hints:   𝑅(π‘₯,𝑦,𝑧)   𝑆(π‘₯,𝑦,𝑧)   𝐺(π‘₯,𝑦,𝑧)   𝐻(π‘₯,𝑦,𝑧)   𝐿(π‘₯,𝑦,𝑧,𝑑)   𝑋(π‘₯)   π‘Œ(π‘₯,𝑦,𝑧)

Proof of Theorem lnoval
Dummy variables 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.7 . 2 𝐿 = (π‘ˆ LnOp π‘Š)
2 fveq2 6843 . . . . . 6 (𝑒 = π‘ˆ β†’ (BaseSetβ€˜π‘’) = (BaseSetβ€˜π‘ˆ))
3 lnoval.1 . . . . . 6 𝑋 = (BaseSetβ€˜π‘ˆ)
42, 3eqtr4di 2791 . . . . 5 (𝑒 = π‘ˆ β†’ (BaseSetβ€˜π‘’) = 𝑋)
54oveq2d 7374 . . . 4 (𝑒 = π‘ˆ β†’ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) = ((BaseSetβ€˜π‘€) ↑m 𝑋))
6 fveq2 6843 . . . . . . . . . 10 (𝑒 = π‘ˆ β†’ ( +𝑣 β€˜π‘’) = ( +𝑣 β€˜π‘ˆ))
7 lnoval.3 . . . . . . . . . 10 𝐺 = ( +𝑣 β€˜π‘ˆ)
86, 7eqtr4di 2791 . . . . . . . . 9 (𝑒 = π‘ˆ β†’ ( +𝑣 β€˜π‘’) = 𝐺)
9 fveq2 6843 . . . . . . . . . . 11 (𝑒 = π‘ˆ β†’ ( ·𝑠OLD β€˜π‘’) = ( ·𝑠OLD β€˜π‘ˆ))
10 lnoval.5 . . . . . . . . . . 11 𝑅 = ( ·𝑠OLD β€˜π‘ˆ)
119, 10eqtr4di 2791 . . . . . . . . . 10 (𝑒 = π‘ˆ β†’ ( ·𝑠OLD β€˜π‘’) = 𝑅)
1211oveqd 7375 . . . . . . . . 9 (𝑒 = π‘ˆ β†’ (π‘₯( ·𝑠OLD β€˜π‘’)𝑦) = (π‘₯𝑅𝑦))
13 eqidd 2734 . . . . . . . . 9 (𝑒 = π‘ˆ β†’ 𝑧 = 𝑧)
148, 12, 13oveq123d 7379 . . . . . . . 8 (𝑒 = π‘ˆ β†’ ((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧) = ((π‘₯𝑅𝑦)𝐺𝑧))
1514fveqeq2d 6851 . . . . . . 7 (𝑒 = π‘ˆ β†’ ((π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))))
164, 15raleqbidv 3318 . . . . . 6 (𝑒 = π‘ˆ β†’ (βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))))
174, 16raleqbidv 3318 . . . . 5 (𝑒 = π‘ˆ β†’ (βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))))
1817ralbidv 3171 . . . 4 (𝑒 = π‘ˆ β†’ (βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))))
195, 18rabeqbidv 3423 . . 3 (𝑒 = π‘ˆ β†’ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))} = {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))})
20 fveq2 6843 . . . . . 6 (𝑀 = π‘Š β†’ (BaseSetβ€˜π‘€) = (BaseSetβ€˜π‘Š))
21 lnoval.2 . . . . . 6 π‘Œ = (BaseSetβ€˜π‘Š)
2220, 21eqtr4di 2791 . . . . 5 (𝑀 = π‘Š β†’ (BaseSetβ€˜π‘€) = π‘Œ)
2322oveq1d 7373 . . . 4 (𝑀 = π‘Š β†’ ((BaseSetβ€˜π‘€) ↑m 𝑋) = (π‘Œ ↑m 𝑋))
24 fveq2 6843 . . . . . . . . 9 (𝑀 = π‘Š β†’ ( +𝑣 β€˜π‘€) = ( +𝑣 β€˜π‘Š))
25 lnoval.4 . . . . . . . . 9 𝐻 = ( +𝑣 β€˜π‘Š)
2624, 25eqtr4di 2791 . . . . . . . 8 (𝑀 = π‘Š β†’ ( +𝑣 β€˜π‘€) = 𝐻)
27 fveq2 6843 . . . . . . . . . 10 (𝑀 = π‘Š β†’ ( ·𝑠OLD β€˜π‘€) = ( ·𝑠OLD β€˜π‘Š))
28 lnoval.6 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD β€˜π‘Š)
2927, 28eqtr4di 2791 . . . . . . . . 9 (𝑀 = π‘Š β†’ ( ·𝑠OLD β€˜π‘€) = 𝑆)
3029oveqd 7375 . . . . . . . 8 (𝑀 = π‘Š β†’ (π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦)) = (π‘₯𝑆(π‘‘β€˜π‘¦)))
31 eqidd 2734 . . . . . . . 8 (𝑀 = π‘Š β†’ (π‘‘β€˜π‘§) = (π‘‘β€˜π‘§))
3226, 30, 31oveq123d 7379 . . . . . . 7 (𝑀 = π‘Š β†’ ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§)))
3332eqeq2d 2744 . . . . . 6 (𝑀 = π‘Š β†’ ((π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))))
34332ralbidv 3209 . . . . 5 (𝑀 = π‘Š β†’ (βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))))
3534ralbidv 3171 . . . 4 (𝑀 = π‘Š β†’ (βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§)) ↔ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))))
3623, 35rabeqbidv 3423 . . 3 (𝑀 = π‘Š β†’ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))} = {𝑑 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))})
37 df-lno 29728 . . 3 LnOp = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))})
38 ovex 7391 . . . 4 (π‘Œ ↑m 𝑋) ∈ V
3938rabex 5290 . . 3 {𝑑 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))} ∈ V
4019, 36, 37, 39ovmpo 7516 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ (π‘ˆ LnOp π‘Š) = {𝑑 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))})
411, 40eqtrid 2785 1 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝐿 = {𝑑 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘‘β€˜((π‘₯𝑅𝑦)𝐺𝑧)) = ((π‘₯𝑆(π‘‘β€˜π‘¦))𝐻(π‘‘β€˜π‘§))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  {crab 3406  β€˜cfv 6497  (class class class)co 7358   ↑m cmap 8768  β„‚cc 11054  NrmCVeccnv 29568   +𝑣 cpv 29569  BaseSetcba 29570   ·𝑠OLD cns 29571   LnOp clno 29724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-lno 29728
This theorem is referenced by:  islno  29737  hhlnoi  30884
  Copyright terms: Public domain W3C validator