MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoval Structured version   Visualization version   GIF version

Theorem lnoval 30679
Description: The set of linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnoval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑡 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))})
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝑈   𝑡,𝑊,𝑥,𝑦,𝑧   𝑡,𝑋,𝑦,𝑧   𝑡,𝑌   𝑡,𝐺   𝑡,𝑅   𝑡,𝐻   𝑡,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐿(𝑥,𝑦,𝑧,𝑡)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem lnoval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.7 . 2 𝐿 = (𝑈 LnOp 𝑊)
2 fveq2 6875 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 lnoval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2788 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54oveq2d 7419 . . . 4 (𝑢 = 𝑈 → ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) = ((BaseSet‘𝑤) ↑m 𝑋))
6 fveq2 6875 . . . . . . . . . 10 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
7 lnoval.3 . . . . . . . . . 10 𝐺 = ( +𝑣𝑈)
86, 7eqtr4di 2788 . . . . . . . . 9 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
9 fveq2 6875 . . . . . . . . . . 11 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
10 lnoval.5 . . . . . . . . . . 11 𝑅 = ( ·𝑠OLD𝑈)
119, 10eqtr4di 2788 . . . . . . . . . 10 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑅)
1211oveqd 7420 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥( ·𝑠OLD𝑢)𝑦) = (𝑥𝑅𝑦))
13 eqidd 2736 . . . . . . . . 9 (𝑢 = 𝑈𝑧 = 𝑧)
148, 12, 13oveq123d 7424 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧) = ((𝑥𝑅𝑦)𝐺𝑧))
1514fveqeq2d 6883 . . . . . . 7 (𝑢 = 𝑈 → ((𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))))
164, 15raleqbidv 3325 . . . . . 6 (𝑢 = 𝑈 → (∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ ∀𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))))
174, 16raleqbidv 3325 . . . . 5 (𝑢 = 𝑈 → (∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))))
1817ralbidv 3163 . . . 4 (𝑢 = 𝑈 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))))
195, 18rabeqbidv 3434 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))} = {𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))})
20 fveq2 6875 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
21 lnoval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
2220, 21eqtr4di 2788 . . . . 5 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
2322oveq1d 7418 . . . 4 (𝑤 = 𝑊 → ((BaseSet‘𝑤) ↑m 𝑋) = (𝑌m 𝑋))
24 fveq2 6875 . . . . . . . . 9 (𝑤 = 𝑊 → ( +𝑣𝑤) = ( +𝑣𝑊))
25 lnoval.4 . . . . . . . . 9 𝐻 = ( +𝑣𝑊)
2624, 25eqtr4di 2788 . . . . . . . 8 (𝑤 = 𝑊 → ( +𝑣𝑤) = 𝐻)
27 fveq2 6875 . . . . . . . . . 10 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑊))
28 lnoval.6 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD𝑊)
2927, 28eqtr4di 2788 . . . . . . . . 9 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = 𝑆)
3029oveqd 7420 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥( ·𝑠OLD𝑤)(𝑡𝑦)) = (𝑥𝑆(𝑡𝑦)))
31 eqidd 2736 . . . . . . . 8 (𝑤 = 𝑊 → (𝑡𝑧) = (𝑡𝑧))
3226, 30, 31oveq123d 7424 . . . . . . 7 (𝑤 = 𝑊 → ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧)))
3332eqeq2d 2746 . . . . . 6 (𝑤 = 𝑊 → ((𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))))
34332ralbidv 3205 . . . . 5 (𝑤 = 𝑊 → (∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))))
3534ralbidv 3163 . . . 4 (𝑤 = 𝑊 → (∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))))
3623, 35rabeqbidv 3434 . . 3 (𝑤 = 𝑊 → {𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))} = {𝑡 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))})
37 df-lno 30671 . . 3 LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))})
38 ovex 7436 . . . 4 (𝑌m 𝑋) ∈ V
3938rabex 5309 . . 3 {𝑡 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))} ∈ V
4019, 36, 37, 39ovmpo 7565 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 LnOp 𝑊) = {𝑡 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))})
411, 40eqtrid 2782 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑡 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡𝑦))𝐻(𝑡𝑧))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cfv 6530  (class class class)co 7403  m cmap 8838  cc 11125  NrmCVeccnv 30511   +𝑣 cpv 30512  BaseSetcba 30513   ·𝑠OLD cns 30514   LnOp clno 30667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-lno 30671
This theorem is referenced by:  islno  30680  hhlnoi  31827
  Copyright terms: Public domain W3C validator