| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-homa | Structured version Visualization version GIF version | ||
| Description: Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma 18069 and df-coda 18070. (Contributed by FL, 6-May-2007.) (Revised by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-homa | ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choma 18068 | . 2 class Homa | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | ccat 17707 | . . 3 class Cat | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑐 |
| 6 | cbs 17247 | . . . . . 6 class Base | |
| 7 | 5, 6 | cfv 6561 | . . . . 5 class (Base‘𝑐) |
| 8 | 7, 7 | cxp 5683 | . . . 4 class ((Base‘𝑐) × (Base‘𝑐)) |
| 9 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 9 | csn 4626 | . . . . 5 class {𝑥} |
| 11 | chom 17308 | . . . . . . 7 class Hom | |
| 12 | 5, 11 | cfv 6561 | . . . . . 6 class (Hom ‘𝑐) |
| 13 | 9, 12 | cfv 6561 | . . . . 5 class ((Hom ‘𝑐)‘𝑥) |
| 14 | 10, 13 | cxp 5683 | . . . 4 class ({𝑥} × ((Hom ‘𝑐)‘𝑥)) |
| 15 | 4, 8, 14 | cmpt 5225 | . . 3 class (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) |
| 16 | 2, 3, 15 | cmpt 5225 | . 2 class (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) |
| 17 | 1, 16 | wceq 1540 | 1 wff Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: homarcl 18073 homafval 18074 arwval 18088 |
| Copyright terms: Public domain | W3C validator |