| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homafval | Structured version Visualization version GIF version | ||
| Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homafval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| homafval | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . 2 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6828 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 4 | homafval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 6 | 5 | sqxpeqd 5651 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵)) |
| 7 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
| 8 | homafval.j | . . . . . . . 8 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 9 | 7, 8 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽) |
| 10 | 9 | fveq1d 6830 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽‘𝑥)) |
| 11 | 10 | xpeq2d 5649 | . . . . 5 ⊢ (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽‘𝑥))) |
| 12 | 6, 11 | mpteq12dv 5180 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| 13 | df-homa 17935 | . . . 4 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 14 | 4 | fvexi 6842 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 15 | 14, 14 | xpex 7692 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 16 | 15 | mptex 7163 | . . . 4 ⊢ (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥))) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6935 | . . 3 ⊢ (𝐶 ∈ Cat → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| 19 | 1, 18 | eqtrid 2780 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {csn 4575 ↦ cmpt 5174 × cxp 5617 ‘cfv 6486 Basecbs 17122 Hom chom 17174 Catccat 17572 Homachoma 17932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-homa 17935 |
| This theorem is referenced by: homaf 17939 homaval 17940 |
| Copyright terms: Public domain | W3C validator |