![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homafval | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homafval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
homafval | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | . 2 ⊢ 𝐻 = (Homa‘𝐶) | |
2 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6890 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | homafval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | 5 | sqxpeqd 5702 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵)) |
7 | fveq2 6890 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
8 | homafval.j | . . . . . . . 8 ⊢ 𝐽 = (Hom ‘𝐶) | |
9 | 7, 8 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽) |
10 | 9 | fveq1d 6892 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽‘𝑥)) |
11 | 10 | xpeq2d 5700 | . . . . 5 ⊢ (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽‘𝑥))) |
12 | 6, 11 | mpteq12dv 5232 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
13 | df-homa 18012 | . . . 4 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
14 | 4 | fvexi 6904 | . . . . . 6 ⊢ 𝐵 ∈ V |
15 | 14, 14 | xpex 7751 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
16 | 15 | mptex 7229 | . . . 4 ⊢ (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥))) ∈ V |
17 | 12, 13, 16 | fvmpt 6998 | . . 3 ⊢ (𝐶 ∈ Cat → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
19 | 1, 18 | eqtrid 2777 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4622 ↦ cmpt 5224 × cxp 5668 ‘cfv 6541 Basecbs 17177 Hom chom 17241 Catccat 17641 Homachoma 18009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-homa 18012 |
This theorem is referenced by: homaf 18016 homaval 18017 |
Copyright terms: Public domain | W3C validator |