| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homafval | Structured version Visualization version GIF version | ||
| Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homafval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| homafval | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . 2 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6826 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 4 | homafval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 6 | 5 | sqxpeqd 5655 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵)) |
| 7 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
| 8 | homafval.j | . . . . . . . 8 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽) |
| 10 | 9 | fveq1d 6828 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽‘𝑥)) |
| 11 | 10 | xpeq2d 5653 | . . . . 5 ⊢ (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽‘𝑥))) |
| 12 | 6, 11 | mpteq12dv 5182 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| 13 | df-homa 17951 | . . . 4 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 14 | 4 | fvexi 6840 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 15 | 14, 14 | xpex 7693 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 16 | 15 | mptex 7163 | . . . 4 ⊢ (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥))) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6934 | . . 3 ⊢ (𝐶 ∈ Cat → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| 19 | 1, 18 | eqtrid 2776 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 ↦ cmpt 5176 × cxp 5621 ‘cfv 6486 Basecbs 17138 Hom chom 17190 Catccat 17588 Homachoma 17948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-homa 17951 |
| This theorem is referenced by: homaf 17955 homaval 17956 |
| Copyright terms: Public domain | W3C validator |