MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homafval Structured version   Visualization version   GIF version

Theorem homafval 17660
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homafval.j 𝐽 = (Hom ‘𝐶)
Assertion
Ref Expression
homafval (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐻(𝑥)   𝐽(𝑥)

Proof of Theorem homafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homarcl.h . 2 𝐻 = (Homa𝐶)
2 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6756 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 homafval.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2797 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
65sqxpeqd 5612 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
7 fveq2 6756 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 homafval.j . . . . . . . 8 𝐽 = (Hom ‘𝐶)
97, 8eqtr4di 2797 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽)
109fveq1d 6758 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽𝑥))
1110xpeq2d 5610 . . . . 5 (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽𝑥)))
126, 11mpteq12dv 5161 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
13 df-homa 17657 . . . 4 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
144fvexi 6770 . . . . . 6 𝐵 ∈ V
1514, 14xpex 7581 . . . . 5 (𝐵 × 𝐵) ∈ V
1615mptex 7081 . . . 4 (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))) ∈ V
1712, 13, 16fvmpt 6857 . . 3 (𝐶 ∈ Cat → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
182, 17syl 17 . 2 (𝜑 → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
191, 18eqtrid 2790 1 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  Basecbs 16840  Hom chom 16899  Catccat 17290  Homachoma 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-homa 17657
This theorem is referenced by:  homaf  17661  homaval  17662
  Copyright terms: Public domain W3C validator