Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homafval | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homafval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
homafval | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | . 2 ⊢ 𝐻 = (Homa‘𝐶) | |
2 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6774 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | homafval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | 5 | sqxpeqd 5621 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵)) |
7 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
8 | homafval.j | . . . . . . . 8 ⊢ 𝐽 = (Hom ‘𝐶) | |
9 | 7, 8 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽) |
10 | 9 | fveq1d 6776 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽‘𝑥)) |
11 | 10 | xpeq2d 5619 | . . . . 5 ⊢ (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽‘𝑥))) |
12 | 6, 11 | mpteq12dv 5165 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
13 | df-homa 17741 | . . . 4 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
14 | 4 | fvexi 6788 | . . . . . 6 ⊢ 𝐵 ∈ V |
15 | 14, 14 | xpex 7603 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
16 | 15 | mptex 7099 | . . . 4 ⊢ (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥))) ∈ V |
17 | 12, 13, 16 | fvmpt 6875 | . . 3 ⊢ (𝐶 ∈ Cat → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Homa‘𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
19 | 1, 18 | eqtrid 2790 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {csn 4561 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 Basecbs 16912 Hom chom 16973 Catccat 17373 Homachoma 17738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-homa 17741 |
This theorem is referenced by: homaf 17745 homaval 17746 |
Copyright terms: Public domain | W3C validator |