MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homafval Structured version   Visualization version   GIF version

Theorem homafval 17963
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homafval.j 𝐽 = (Hom ‘𝐶)
Assertion
Ref Expression
homafval (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐻(𝑥)   𝐽(𝑥)

Proof of Theorem homafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homarcl.h . 2 𝐻 = (Homa𝐶)
2 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6879 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 homafval.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2790 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
65sqxpeqd 5702 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
7 fveq2 6879 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 homafval.j . . . . . . . 8 𝐽 = (Hom ‘𝐶)
97, 8eqtr4di 2790 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽)
109fveq1d 6881 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽𝑥))
1110xpeq2d 5700 . . . . 5 (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽𝑥)))
126, 11mpteq12dv 5233 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
13 df-homa 17960 . . . 4 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
144fvexi 6893 . . . . . 6 𝐵 ∈ V
1514, 14xpex 7724 . . . . 5 (𝐵 × 𝐵) ∈ V
1615mptex 7210 . . . 4 (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))) ∈ V
1712, 13, 16fvmpt 6985 . . 3 (𝐶 ∈ Cat → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
182, 17syl 17 . 2 (𝜑 → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
191, 18eqtrid 2784 1 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {csn 4623  cmpt 5225   × cxp 5668  cfv 6533  Basecbs 17128  Hom chom 17192  Catccat 17592  Homachoma 17957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-homa 17960
This theorem is referenced by:  homaf  17964  homaval  17965
  Copyright terms: Public domain W3C validator