MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homafval Structured version   Visualization version   GIF version

Theorem homafval 17938
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homafval.j 𝐽 = (Hom ‘𝐶)
Assertion
Ref Expression
homafval (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐻(𝑥)   𝐽(𝑥)

Proof of Theorem homafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homarcl.h . 2 𝐻 = (Homa𝐶)
2 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6828 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 homafval.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2786 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
65sqxpeqd 5651 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
7 fveq2 6828 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 homafval.j . . . . . . . 8 𝐽 = (Hom ‘𝐶)
97, 8eqtr4di 2786 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽)
109fveq1d 6830 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽𝑥))
1110xpeq2d 5649 . . . . 5 (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽𝑥)))
126, 11mpteq12dv 5180 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
13 df-homa 17935 . . . 4 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
144fvexi 6842 . . . . . 6 𝐵 ∈ V
1514, 14xpex 7692 . . . . 5 (𝐵 × 𝐵) ∈ V
1615mptex 7163 . . . 4 (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))) ∈ V
1712, 13, 16fvmpt 6935 . . 3 (𝐶 ∈ Cat → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
182, 17syl 17 . 2 (𝜑 → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
191, 18eqtrid 2780 1 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4575  cmpt 5174   × cxp 5617  cfv 6486  Basecbs 17122  Hom chom 17174  Catccat 17572  Homachoma 17932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-homa 17935
This theorem is referenced by:  homaf  17939  homaval  17940
  Copyright terms: Public domain W3C validator