MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homafval Structured version   Visualization version   GIF version

Theorem homafval 17744
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homafval.j 𝐽 = (Hom ‘𝐶)
Assertion
Ref Expression
homafval (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐻(𝑥)   𝐽(𝑥)

Proof of Theorem homafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homarcl.h . 2 𝐻 = (Homa𝐶)
2 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6774 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 homafval.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2796 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
65sqxpeqd 5621 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
7 fveq2 6774 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 homafval.j . . . . . . . 8 𝐽 = (Hom ‘𝐶)
97, 8eqtr4di 2796 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐽)
109fveq1d 6776 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐽𝑥))
1110xpeq2d 5619 . . . . 5 (𝑐 = 𝐶 → ({𝑥} × ((Hom ‘𝑐)‘𝑥)) = ({𝑥} × (𝐽𝑥)))
126, 11mpteq12dv 5165 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
13 df-homa 17741 . . . 4 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
144fvexi 6788 . . . . . 6 𝐵 ∈ V
1514, 14xpex 7603 . . . . 5 (𝐵 × 𝐵) ∈ V
1615mptex 7099 . . . 4 (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))) ∈ V
1712, 13, 16fvmpt 6875 . . 3 (𝐶 ∈ Cat → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
182, 17syl 17 . 2 (𝜑 → (Homa𝐶) = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
191, 18eqtrid 2790 1 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561  cmpt 5157   × cxp 5587  cfv 6433  Basecbs 16912  Hom chom 16973  Catccat 17373  Homachoma 17738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-homa 17741
This theorem is referenced by:  homaf  17745  homaval  17746
  Copyright terms: Public domain W3C validator