Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > arwval | Structured version Visualization version GIF version |
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwval.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwval.a | . 2 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | fveq2 6774 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = (Homa‘𝐶)) | |
3 | arwval.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
4 | 2, 3 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = 𝐻) |
5 | 4 | rneqd 5847 | . . . . 5 ⊢ (𝑐 = 𝐶 → ran (Homa‘𝑐) = ran 𝐻) |
6 | 5 | unieqd 4853 | . . . 4 ⊢ (𝑐 = 𝐶 → ∪ ran (Homa‘𝑐) = ∪ ran 𝐻) |
7 | df-arw 17742 | . . . 4 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
8 | 3 | fvexi 6788 | . . . . . 6 ⊢ 𝐻 ∈ V |
9 | 8 | rnex 7759 | . . . . 5 ⊢ ran 𝐻 ∈ V |
10 | 9 | uniex 7594 | . . . 4 ⊢ ∪ ran 𝐻 ∈ V |
11 | 6, 7, 10 | fvmpt 6875 | . . 3 ⊢ (𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
12 | 7 | fvmptndm 6905 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅) |
13 | df-homa 17741 | . . . . . . . . . 10 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
14 | 13 | fvmptndm 6905 | . . . . . . . . 9 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
15 | 3, 14 | eqtrid 2790 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
16 | 15 | rneqd 5847 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅) |
17 | rn0 5835 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
18 | 16, 17 | eqtrdi 2794 | . . . . . 6 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ∅) |
19 | 18 | unieqd 4853 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅) |
20 | uni0 4869 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
21 | 19, 20 | eqtrdi 2794 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅) |
22 | 12, 21 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (Arrow‘𝐶) = ∪ ran 𝐻 |
24 | 1, 23 | eqtri 2766 | 1 ⊢ 𝐴 = ∪ ran 𝐻 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ∅c0 4256 {csn 4561 ∪ cuni 4839 ↦ cmpt 5157 × cxp 5587 ran crn 5590 ‘cfv 6433 Basecbs 16912 Hom chom 16973 Catccat 17373 Arrowcarw 17737 Homachoma 17738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-homa 17741 df-arw 17742 |
This theorem is referenced by: arwhoma 17760 homarw 17761 |
Copyright terms: Public domain | W3C validator |