MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   GIF version

Theorem arwval 17968
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a 𝐴 = (Arrow‘𝐶)
arwval.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwval 𝐴 = ran 𝐻

Proof of Theorem arwval
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2 𝐴 = (Arrow‘𝐶)
2 fveq2 6826 . . . . . . 7 (𝑐 = 𝐶 → (Homa𝑐) = (Homa𝐶))
3 arwval.h . . . . . . 7 𝐻 = (Homa𝐶)
42, 3eqtr4di 2782 . . . . . 6 (𝑐 = 𝐶 → (Homa𝑐) = 𝐻)
54rneqd 5884 . . . . 5 (𝑐 = 𝐶 → ran (Homa𝑐) = ran 𝐻)
65unieqd 4874 . . . 4 (𝑐 = 𝐶 ran (Homa𝑐) = ran 𝐻)
7 df-arw 17952 . . . 4 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
83fvexi 6840 . . . . . 6 𝐻 ∈ V
98rnex 7850 . . . . 5 ran 𝐻 ∈ V
109uniex 7681 . . . 4 ran 𝐻 ∈ V
116, 7, 10fvmpt 6934 . . 3 (𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
127fvmptndm 6965 . . . 4 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅)
13 df-homa 17951 . . . . . . . . . 10 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
1413fvmptndm 6965 . . . . . . . . 9 𝐶 ∈ Cat → (Homa𝐶) = ∅)
153, 14eqtrid 2776 . . . . . . . 8 𝐶 ∈ Cat → 𝐻 = ∅)
1615rneqd 5884 . . . . . . 7 𝐶 ∈ Cat → ran 𝐻 = ran ∅)
17 rn0 5872 . . . . . . 7 ran ∅ = ∅
1816, 17eqtrdi 2780 . . . . . 6 𝐶 ∈ Cat → ran 𝐻 = ∅)
1918unieqd 4874 . . . . 5 𝐶 ∈ Cat → ran 𝐻 = ∅)
20 uni0 4889 . . . . 5 ∅ = ∅
2119, 20eqtrdi 2780 . . . 4 𝐶 ∈ Cat → ran 𝐻 = ∅)
2212, 21eqtr4d 2767 . . 3 𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
2311, 22pm2.61i 182 . 2 (Arrow‘𝐶) = ran 𝐻
241, 23eqtri 2752 1 𝐴 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  c0 4286  {csn 4579   cuni 4861  cmpt 5176   × cxp 5621  ran crn 5624  cfv 6486  Basecbs 17138  Hom chom 17190  Catccat 17588  Arrowcarw 17947  Homachoma 17948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-homa 17951  df-arw 17952
This theorem is referenced by:  arwhoma  17970  homarw  17971
  Copyright terms: Public domain W3C validator