MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   GIF version

Theorem arwval 18005
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a 𝐴 = (Arrow‘𝐶)
arwval.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwval 𝐴 = ran 𝐻

Proof of Theorem arwval
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2 𝐴 = (Arrow‘𝐶)
2 fveq2 6858 . . . . . . 7 (𝑐 = 𝐶 → (Homa𝑐) = (Homa𝐶))
3 arwval.h . . . . . . 7 𝐻 = (Homa𝐶)
42, 3eqtr4di 2782 . . . . . 6 (𝑐 = 𝐶 → (Homa𝑐) = 𝐻)
54rneqd 5902 . . . . 5 (𝑐 = 𝐶 → ran (Homa𝑐) = ran 𝐻)
65unieqd 4884 . . . 4 (𝑐 = 𝐶 ran (Homa𝑐) = ran 𝐻)
7 df-arw 17989 . . . 4 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
83fvexi 6872 . . . . . 6 𝐻 ∈ V
98rnex 7886 . . . . 5 ran 𝐻 ∈ V
109uniex 7717 . . . 4 ran 𝐻 ∈ V
116, 7, 10fvmpt 6968 . . 3 (𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
127fvmptndm 6999 . . . 4 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅)
13 df-homa 17988 . . . . . . . . . 10 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
1413fvmptndm 6999 . . . . . . . . 9 𝐶 ∈ Cat → (Homa𝐶) = ∅)
153, 14eqtrid 2776 . . . . . . . 8 𝐶 ∈ Cat → 𝐻 = ∅)
1615rneqd 5902 . . . . . . 7 𝐶 ∈ Cat → ran 𝐻 = ran ∅)
17 rn0 5889 . . . . . . 7 ran ∅ = ∅
1816, 17eqtrdi 2780 . . . . . 6 𝐶 ∈ Cat → ran 𝐻 = ∅)
1918unieqd 4884 . . . . 5 𝐶 ∈ Cat → ran 𝐻 = ∅)
20 uni0 4899 . . . . 5 ∅ = ∅
2119, 20eqtrdi 2780 . . . 4 𝐶 ∈ Cat → ran 𝐻 = ∅)
2212, 21eqtr4d 2767 . . 3 𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
2311, 22pm2.61i 182 . 2 (Arrow‘𝐶) = ran 𝐻
241, 23eqtri 2752 1 𝐴 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  c0 4296  {csn 4589   cuni 4871  cmpt 5188   × cxp 5636  ran crn 5639  cfv 6511  Basecbs 17179  Hom chom 17231  Catccat 17625  Arrowcarw 17984  Homachoma 17985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-homa 17988  df-arw 17989
This theorem is referenced by:  arwhoma  18007  homarw  18008
  Copyright terms: Public domain W3C validator