MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   GIF version

Theorem arwval 17674
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a 𝐴 = (Arrow‘𝐶)
arwval.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwval 𝐴 = ran 𝐻

Proof of Theorem arwval
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2 𝐴 = (Arrow‘𝐶)
2 fveq2 6756 . . . . . . 7 (𝑐 = 𝐶 → (Homa𝑐) = (Homa𝐶))
3 arwval.h . . . . . . 7 𝐻 = (Homa𝐶)
42, 3eqtr4di 2797 . . . . . 6 (𝑐 = 𝐶 → (Homa𝑐) = 𝐻)
54rneqd 5836 . . . . 5 (𝑐 = 𝐶 → ran (Homa𝑐) = ran 𝐻)
65unieqd 4850 . . . 4 (𝑐 = 𝐶 ran (Homa𝑐) = ran 𝐻)
7 df-arw 17658 . . . 4 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
83fvexi 6770 . . . . . 6 𝐻 ∈ V
98rnex 7733 . . . . 5 ran 𝐻 ∈ V
109uniex 7572 . . . 4 ran 𝐻 ∈ V
116, 7, 10fvmpt 6857 . . 3 (𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
127fvmptndm 6887 . . . 4 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅)
13 df-homa 17657 . . . . . . . . . 10 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
1413fvmptndm 6887 . . . . . . . . 9 𝐶 ∈ Cat → (Homa𝐶) = ∅)
153, 14eqtrid 2790 . . . . . . . 8 𝐶 ∈ Cat → 𝐻 = ∅)
1615rneqd 5836 . . . . . . 7 𝐶 ∈ Cat → ran 𝐻 = ran ∅)
17 rn0 5824 . . . . . . 7 ran ∅ = ∅
1816, 17eqtrdi 2795 . . . . . 6 𝐶 ∈ Cat → ran 𝐻 = ∅)
1918unieqd 4850 . . . . 5 𝐶 ∈ Cat → ran 𝐻 = ∅)
20 uni0 4866 . . . . 5 ∅ = ∅
2119, 20eqtrdi 2795 . . . 4 𝐶 ∈ Cat → ran 𝐻 = ∅)
2212, 21eqtr4d 2781 . . 3 𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
2311, 22pm2.61i 182 . 2 (Arrow‘𝐶) = ran 𝐻
241, 23eqtri 2766 1 𝐴 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  c0 4253  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  ran crn 5581  cfv 6418  Basecbs 16840  Hom chom 16899  Catccat 17290  Arrowcarw 17653  Homachoma 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-homa 17657  df-arw 17658
This theorem is referenced by:  arwhoma  17676  homarw  17677
  Copyright terms: Public domain W3C validator