| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwval | Structured version Visualization version GIF version | ||
| Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwval.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwval.a | . 2 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 2 | fveq2 6861 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = (Homa‘𝐶)) | |
| 3 | arwval.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = 𝐻) |
| 5 | 4 | rneqd 5905 | . . . . 5 ⊢ (𝑐 = 𝐶 → ran (Homa‘𝑐) = ran 𝐻) |
| 6 | 5 | unieqd 4887 | . . . 4 ⊢ (𝑐 = 𝐶 → ∪ ran (Homa‘𝑐) = ∪ ran 𝐻) |
| 7 | df-arw 17996 | . . . 4 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
| 8 | 3 | fvexi 6875 | . . . . . 6 ⊢ 𝐻 ∈ V |
| 9 | 8 | rnex 7889 | . . . . 5 ⊢ ran 𝐻 ∈ V |
| 10 | 9 | uniex 7720 | . . . 4 ⊢ ∪ ran 𝐻 ∈ V |
| 11 | 6, 7, 10 | fvmpt 6971 | . . 3 ⊢ (𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
| 12 | 7 | fvmptndm 7002 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅) |
| 13 | df-homa 17995 | . . . . . . . . . 10 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 14 | 13 | fvmptndm 7002 | . . . . . . . . 9 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
| 15 | 3, 14 | eqtrid 2777 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
| 16 | 15 | rneqd 5905 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅) |
| 17 | rn0 5892 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
| 18 | 16, 17 | eqtrdi 2781 | . . . . . 6 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ∅) |
| 19 | 18 | unieqd 4887 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅) |
| 20 | uni0 4902 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 21 | 19, 20 | eqtrdi 2781 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅) |
| 22 | 12, 21 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
| 23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (Arrow‘𝐶) = ∪ ran 𝐻 |
| 24 | 1, 23 | eqtri 2753 | 1 ⊢ 𝐴 = ∪ ran 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4299 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 × cxp 5639 ran crn 5642 ‘cfv 6514 Basecbs 17186 Hom chom 17238 Catccat 17632 Arrowcarw 17991 Homachoma 17992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-homa 17995 df-arw 17996 |
| This theorem is referenced by: arwhoma 18014 homarw 18015 |
| Copyright terms: Public domain | W3C validator |