| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwval | Structured version Visualization version GIF version | ||
| Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwval.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwval.a | . 2 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 2 | fveq2 6828 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = (Homa‘𝐶)) | |
| 3 | arwval.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = 𝐻) |
| 5 | 4 | rneqd 5882 | . . . . 5 ⊢ (𝑐 = 𝐶 → ran (Homa‘𝑐) = ran 𝐻) |
| 6 | 5 | unieqd 4871 | . . . 4 ⊢ (𝑐 = 𝐶 → ∪ ran (Homa‘𝑐) = ∪ ran 𝐻) |
| 7 | df-arw 17936 | . . . 4 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
| 8 | 3 | fvexi 6842 | . . . . . 6 ⊢ 𝐻 ∈ V |
| 9 | 8 | rnex 7846 | . . . . 5 ⊢ ran 𝐻 ∈ V |
| 10 | 9 | uniex 7680 | . . . 4 ⊢ ∪ ran 𝐻 ∈ V |
| 11 | 6, 7, 10 | fvmpt 6935 | . . 3 ⊢ (𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
| 12 | 7 | fvmptndm 6966 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅) |
| 13 | df-homa 17935 | . . . . . . . . . 10 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 14 | 13 | fvmptndm 6966 | . . . . . . . . 9 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
| 15 | 3, 14 | eqtrid 2780 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
| 16 | 15 | rneqd 5882 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅) |
| 17 | rn0 5870 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
| 18 | 16, 17 | eqtrdi 2784 | . . . . . 6 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ∅) |
| 19 | 18 | unieqd 4871 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅) |
| 20 | uni0 4886 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 21 | 19, 20 | eqtrdi 2784 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅) |
| 22 | 12, 21 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
| 23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (Arrow‘𝐶) = ∪ ran 𝐻 |
| 24 | 1, 23 | eqtri 2756 | 1 ⊢ 𝐴 = ∪ ran 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4575 ∪ cuni 4858 ↦ cmpt 5174 × cxp 5617 ran crn 5620 ‘cfv 6486 Basecbs 17122 Hom chom 17174 Catccat 17572 Arrowcarw 17931 Homachoma 17932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-homa 17935 df-arw 17936 |
| This theorem is referenced by: arwhoma 17954 homarw 17955 |
| Copyright terms: Public domain | W3C validator |