Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > arwval | Structured version Visualization version GIF version |
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwval.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwval.a | . 2 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | fveq2 6756 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = (Homa‘𝐶)) | |
3 | arwval.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
4 | 2, 3 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = 𝐻) |
5 | 4 | rneqd 5836 | . . . . 5 ⊢ (𝑐 = 𝐶 → ran (Homa‘𝑐) = ran 𝐻) |
6 | 5 | unieqd 4850 | . . . 4 ⊢ (𝑐 = 𝐶 → ∪ ran (Homa‘𝑐) = ∪ ran 𝐻) |
7 | df-arw 17658 | . . . 4 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
8 | 3 | fvexi 6770 | . . . . . 6 ⊢ 𝐻 ∈ V |
9 | 8 | rnex 7733 | . . . . 5 ⊢ ran 𝐻 ∈ V |
10 | 9 | uniex 7572 | . . . 4 ⊢ ∪ ran 𝐻 ∈ V |
11 | 6, 7, 10 | fvmpt 6857 | . . 3 ⊢ (𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
12 | 7 | fvmptndm 6887 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅) |
13 | df-homa 17657 | . . . . . . . . . 10 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
14 | 13 | fvmptndm 6887 | . . . . . . . . 9 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
15 | 3, 14 | eqtrid 2790 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
16 | 15 | rneqd 5836 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅) |
17 | rn0 5824 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
18 | 16, 17 | eqtrdi 2795 | . . . . . 6 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ∅) |
19 | 18 | unieqd 4850 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅) |
20 | uni0 4866 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
21 | 19, 20 | eqtrdi 2795 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅) |
22 | 12, 21 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (Arrow‘𝐶) = ∪ ran 𝐻 |
24 | 1, 23 | eqtri 2766 | 1 ⊢ 𝐴 = ∪ ran 𝐻 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ∅c0 4253 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ‘cfv 6418 Basecbs 16840 Hom chom 16899 Catccat 17290 Arrowcarw 17653 Homachoma 17654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-homa 17657 df-arw 17658 |
This theorem is referenced by: arwhoma 17676 homarw 17677 |
Copyright terms: Public domain | W3C validator |