MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   GIF version

Theorem arwval 17758
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a 𝐴 = (Arrow‘𝐶)
arwval.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwval 𝐴 = ran 𝐻

Proof of Theorem arwval
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2 𝐴 = (Arrow‘𝐶)
2 fveq2 6774 . . . . . . 7 (𝑐 = 𝐶 → (Homa𝑐) = (Homa𝐶))
3 arwval.h . . . . . . 7 𝐻 = (Homa𝐶)
42, 3eqtr4di 2796 . . . . . 6 (𝑐 = 𝐶 → (Homa𝑐) = 𝐻)
54rneqd 5847 . . . . 5 (𝑐 = 𝐶 → ran (Homa𝑐) = ran 𝐻)
65unieqd 4853 . . . 4 (𝑐 = 𝐶 ran (Homa𝑐) = ran 𝐻)
7 df-arw 17742 . . . 4 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
83fvexi 6788 . . . . . 6 𝐻 ∈ V
98rnex 7759 . . . . 5 ran 𝐻 ∈ V
109uniex 7594 . . . 4 ran 𝐻 ∈ V
116, 7, 10fvmpt 6875 . . 3 (𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
127fvmptndm 6905 . . . 4 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅)
13 df-homa 17741 . . . . . . . . . 10 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
1413fvmptndm 6905 . . . . . . . . 9 𝐶 ∈ Cat → (Homa𝐶) = ∅)
153, 14eqtrid 2790 . . . . . . . 8 𝐶 ∈ Cat → 𝐻 = ∅)
1615rneqd 5847 . . . . . . 7 𝐶 ∈ Cat → ran 𝐻 = ran ∅)
17 rn0 5835 . . . . . . 7 ran ∅ = ∅
1816, 17eqtrdi 2794 . . . . . 6 𝐶 ∈ Cat → ran 𝐻 = ∅)
1918unieqd 4853 . . . . 5 𝐶 ∈ Cat → ran 𝐻 = ∅)
20 uni0 4869 . . . . 5 ∅ = ∅
2119, 20eqtrdi 2794 . . . 4 𝐶 ∈ Cat → ran 𝐻 = ∅)
2212, 21eqtr4d 2781 . . 3 𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
2311, 22pm2.61i 182 . 2 (Arrow‘𝐶) = ran 𝐻
241, 23eqtri 2766 1 𝐴 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  c0 4256  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ran crn 5590  cfv 6433  Basecbs 16912  Hom chom 16973  Catccat 17373  Arrowcarw 17737  Homachoma 17738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-homa 17741  df-arw 17742
This theorem is referenced by:  arwhoma  17760  homarw  17761
  Copyright terms: Public domain W3C validator