![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwval | Structured version Visualization version GIF version |
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwval.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwval.a | . 2 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = (Homa‘𝐶)) | |
3 | arwval.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Homa‘𝑐) = 𝐻) |
5 | 4 | rneqd 5963 | . . . . 5 ⊢ (𝑐 = 𝐶 → ran (Homa‘𝑐) = ran 𝐻) |
6 | 5 | unieqd 4944 | . . . 4 ⊢ (𝑐 = 𝐶 → ∪ ran (Homa‘𝑐) = ∪ ran 𝐻) |
7 | df-arw 18094 | . . . 4 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
8 | 3 | fvexi 6934 | . . . . . 6 ⊢ 𝐻 ∈ V |
9 | 8 | rnex 7950 | . . . . 5 ⊢ ran 𝐻 ∈ V |
10 | 9 | uniex 7776 | . . . 4 ⊢ ∪ ran 𝐻 ∈ V |
11 | 6, 7, 10 | fvmpt 7029 | . . 3 ⊢ (𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
12 | 7 | fvmptndm 7060 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅) |
13 | df-homa 18093 | . . . . . . . . . 10 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
14 | 13 | fvmptndm 7060 | . . . . . . . . 9 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
15 | 3, 14 | eqtrid 2792 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
16 | 15 | rneqd 5963 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅) |
17 | rn0 5950 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
18 | 16, 17 | eqtrdi 2796 | . . . . . 6 ⊢ (¬ 𝐶 ∈ Cat → ran 𝐻 = ∅) |
19 | 18 | unieqd 4944 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅) |
20 | uni0 4959 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
21 | 19, 20 | eqtrdi 2796 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅) |
22 | 12, 21 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (Arrow‘𝐶) = ∪ ran 𝐻) |
23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (Arrow‘𝐶) = ∪ ran 𝐻 |
24 | 1, 23 | eqtri 2768 | 1 ⊢ 𝐴 = ∪ ran 𝐻 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∅c0 4352 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 × cxp 5698 ran crn 5701 ‘cfv 6573 Basecbs 17258 Hom chom 17322 Catccat 17722 Arrowcarw 18089 Homachoma 18090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-homa 18093 df-arw 18094 |
This theorem is referenced by: arwhoma 18112 homarw 18113 |
Copyright terms: Public domain | W3C validator |