MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl Structured version   Visualization version   GIF version

Theorem homarcl 18095
Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarcl (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)

Proof of Theorem homarcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4363 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
2 homarcl.h . . . . 5 𝐻 = (Homa𝐶)
3 df-homa 18093 . . . . . 6 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
43fvmptndm 7060 . . . . 5 𝐶 ∈ Cat → (Homa𝐶) = ∅)
52, 4eqtrid 2792 . . . 4 𝐶 ∈ Cat → 𝐻 = ∅)
65oveqd 7465 . . 3 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋𝑌))
7 0ov 7485 . . 3 (𝑋𝑌) = ∅
86, 7eqtrdi 2796 . 2 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅)
91, 8nsyl2 141 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  Homachoma 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451  df-homa 18093
This theorem is referenced by:  homarcl2  18102  homarel  18103  homa1  18104  homahom2  18105  coahom  18137  arwlid  18139  arwrid  18140  arwass  18141
  Copyright terms: Public domain W3C validator