MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl Structured version   Visualization version   GIF version

Theorem homarcl 18041
Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarcl (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)

Proof of Theorem homarcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4315 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
2 homarcl.h . . . . 5 𝐻 = (Homa𝐶)
3 df-homa 18039 . . . . . 6 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
43fvmptndm 7017 . . . . 5 𝐶 ∈ Cat → (Homa𝐶) = ∅)
52, 4eqtrid 2782 . . . 4 𝐶 ∈ Cat → 𝐻 = ∅)
65oveqd 7422 . . 3 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋𝑌))
7 0ov 7442 . . 3 (𝑋𝑌) = ∅
86, 7eqtrdi 2786 . 2 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅)
91, 8nsyl2 141 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  c0 4308  {csn 4601  cmpt 5201   × cxp 5652  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  Catccat 17676  Homachoma 18036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-dm 5664  df-iota 6484  df-fv 6539  df-ov 7408  df-homa 18039
This theorem is referenced by:  homarcl2  18048  homarel  18049  homa1  18050  homahom2  18051  coahom  18083  arwlid  18085  arwrid  18086  arwass  18087
  Copyright terms: Public domain W3C validator