| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarcl | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4303 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
| 2 | homarcl.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | df-homa 17988 | . . . . . 6 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 4 | 3 | fvmptndm 6999 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
| 5 | 2, 4 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
| 6 | 5 | oveqd 7404 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋∅𝑌)) |
| 7 | 0ov 7424 | . . 3 ⊢ (𝑋∅𝑌) = ∅ | |
| 8 | 6, 7 | eqtrdi 2780 | . 2 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅) |
| 9 | 1, 8 | nsyl2 141 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 {csn 4589 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 Catccat 17625 Homachoma 17985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-homa 17988 |
| This theorem is referenced by: homarcl2 17997 homarel 17998 homa1 17999 homahom2 18000 coahom 18032 arwlid 18034 arwrid 18035 arwass 18036 |
| Copyright terms: Public domain | W3C validator |