| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarcl | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4290 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
| 2 | homarcl.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | df-homa 17930 | . . . . . 6 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 4 | 3 | fvmptndm 6960 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
| 5 | 2, 4 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
| 6 | 5 | oveqd 7363 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋∅𝑌)) |
| 7 | 0ov 7383 | . . 3 ⊢ (𝑋∅𝑌) = ∅ | |
| 8 | 6, 7 | eqtrdi 2782 | . 2 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅) |
| 9 | 1, 8 | nsyl2 141 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4283 {csn 4576 ↦ cmpt 5172 × cxp 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 Catccat 17567 Homachoma 17927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 df-homa 17930 |
| This theorem is referenced by: homarcl2 17939 homarel 17940 homa1 17941 homahom2 17942 coahom 17974 arwlid 17976 arwrid 17977 arwass 17978 |
| Copyright terms: Public domain | W3C validator |