Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homarcl | Structured version Visualization version GIF version |
Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homarcl | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4267 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
2 | homarcl.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | df-homa 17741 | . . . . . 6 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
4 | 3 | fvmptndm 6905 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
5 | 2, 4 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
6 | 5 | oveqd 7292 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋∅𝑌)) |
7 | 0ov 7312 | . . 3 ⊢ (𝑋∅𝑌) = ∅ | |
8 | 6, 7 | eqtrdi 2794 | . 2 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅) |
9 | 1, 8 | nsyl2 141 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∅c0 4256 {csn 4561 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Catccat 17373 Homachoma 17738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-homa 17741 |
This theorem is referenced by: homarcl2 17750 homarel 17751 homa1 17752 homahom2 17753 coahom 17785 arwlid 17787 arwrid 17788 arwass 17789 |
Copyright terms: Public domain | W3C validator |