MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl Structured version   Visualization version   GIF version

Theorem homarcl 17564
Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarcl (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)

Proof of Theorem homarcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4264 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
2 homarcl.h . . . . 5 𝐻 = (Homa𝐶)
3 df-homa 17562 . . . . . 6 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
43fvmptndm 6869 . . . . 5 𝐶 ∈ Cat → (Homa𝐶) = ∅)
52, 4eqtrid 2791 . . . 4 𝐶 ∈ Cat → 𝐻 = ∅)
65oveqd 7251 . . 3 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋𝑌))
7 0ov 7271 . . 3 (𝑋𝑌) = ∅
86, 7eqtrdi 2796 . 2 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅)
91, 8nsyl2 143 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  c0 4253  {csn 4557  cmpt 5151   × cxp 5566  cfv 6400  (class class class)co 7234  Basecbs 16790  Hom chom 16843  Catccat 17197  Homachoma 17559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pr 5338
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4254  df-if 4456  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4836  df-br 5070  df-opab 5132  df-mpt 5152  df-dm 5578  df-iota 6358  df-fv 6408  df-ov 7237  df-homa 17562
This theorem is referenced by:  homarcl2  17571  homarel  17572  homa1  17573  homahom2  17574  coahom  17606  arwlid  17608  arwrid  17609  arwass  17610
  Copyright terms: Public domain W3C validator