MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl Structured version   Visualization version   GIF version

Theorem homarcl 17743
Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarcl (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)

Proof of Theorem homarcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4267 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
2 homarcl.h . . . . 5 𝐻 = (Homa𝐶)
3 df-homa 17741 . . . . . 6 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
43fvmptndm 6905 . . . . 5 𝐶 ∈ Cat → (Homa𝐶) = ∅)
52, 4eqtrid 2790 . . . 4 𝐶 ∈ Cat → 𝐻 = ∅)
65oveqd 7292 . . 3 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋𝑌))
7 0ov 7312 . . 3 (𝑋𝑌) = ∅
86, 7eqtrdi 2794 . 2 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅)
91, 8nsyl2 141 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  c0 4256  {csn 4561  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Catccat 17373  Homachoma 17738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278  df-homa 17741
This theorem is referenced by:  homarcl2  17750  homarel  17751  homa1  17752  homahom2  17753  coahom  17785  arwlid  17787  arwrid  17788  arwass  17789
  Copyright terms: Public domain W3C validator