| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarcl | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
| 2 | homarcl.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | df-homa 17951 | . . . . . 6 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
| 4 | 3 | fvmptndm 6965 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
| 5 | 2, 4 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
| 6 | 5 | oveqd 7370 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋∅𝑌)) |
| 7 | 0ov 7390 | . . 3 ⊢ (𝑋∅𝑌) = ∅ | |
| 8 | 6, 7 | eqtrdi 2780 | . 2 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅) |
| 9 | 1, 8 | nsyl2 141 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4286 {csn 4579 ↦ cmpt 5176 × cxp 5621 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Catccat 17588 Homachoma 17948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 df-homa 17951 |
| This theorem is referenced by: homarcl2 17960 homarel 17961 homa1 17962 homahom2 17963 coahom 17995 arwlid 17997 arwrid 17998 arwass 17999 |
| Copyright terms: Public domain | W3C validator |