![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homarcl | Structured version Visualization version GIF version |
Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homarcl | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4333 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
2 | homarcl.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | df-homa 17975 | . . . . . 6 ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | |
4 | 3 | fvmptndm 7028 | . . . . 5 ⊢ (¬ 𝐶 ∈ Cat → (Homa‘𝐶) = ∅) |
5 | 2, 4 | eqtrid 2784 | . . . 4 ⊢ (¬ 𝐶 ∈ Cat → 𝐻 = ∅) |
6 | 5 | oveqd 7425 | . . 3 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = (𝑋∅𝑌)) |
7 | 0ov 7445 | . . 3 ⊢ (𝑋∅𝑌) = ∅ | |
8 | 6, 7 | eqtrdi 2788 | . 2 ⊢ (¬ 𝐶 ∈ Cat → (𝑋𝐻𝑌) = ∅) |
9 | 1, 8 | nsyl2 141 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4322 {csn 4628 ↦ cmpt 5231 × cxp 5674 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 Hom chom 17207 Catccat 17607 Homachoma 17972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-dm 5686 df-iota 6495 df-fv 6551 df-ov 7411 df-homa 17975 |
This theorem is referenced by: homarcl2 17984 homarel 17985 homa1 17986 homahom2 17987 coahom 18019 arwlid 18021 arwrid 18022 arwass 18023 |
Copyright terms: Public domain | W3C validator |