| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homffval | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
| Ref | Expression |
|---|---|
| homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| homffval | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | . 2 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 2 | fveq2 6881 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 3 | homffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 2, 3 | eqtr4di 2789 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 5 | fveq2 6881 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
| 6 | homffval.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | 5, 6 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
| 8 | 7 | oveqd 7427 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
| 9 | 4, 4, 8 | mpoeq123dv 7487 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 10 | df-homf 17687 | . . . 4 ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | |
| 11 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | 11, 11 | mpoex 8083 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) ∈ V |
| 13 | 9, 10, 12 | fvmpt 6991 | . . 3 ⊢ (𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 14 | fvprc 6873 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = ∅) | |
| 15 | fvprc 6873 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 16 | 3, 15 | eqtrid 2783 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
| 17 | 16 | olcd 874 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
| 18 | 0mpo0 7495 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) |
| 20 | 14, 19 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| 22 | 1, 21 | eqtri 2759 | 1 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 Basecbs 17233 Hom chom 17287 Homf chomf 17683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-homf 17687 |
| This theorem is referenced by: fnhomeqhomf 17708 homfval 17709 homffn 17710 homfeq 17711 oppchomf 17737 reschomf 17849 homf0 48951 |
| Copyright terms: Public domain | W3C validator |