MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homffval Structured version   Visualization version   GIF version

Theorem homffval 17651
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
homffval 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem homffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homffval.f . 2 𝐹 = (Homf𝐶)
2 fveq2 6858 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 homffval.b . . . . . 6 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2782 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6858 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 homffval.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2782 . . . . . 6 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7404 . . . . 5 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦))
94, 4, 8mpoeq123dv 7464 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
10 df-homf 17631 . . . 4 Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)))
113fvexi 6872 . . . . 5 𝐵 ∈ V
1211, 11mpoex 8058 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) ∈ V
139, 10, 12fvmpt 6968 . . 3 (𝐶 ∈ V → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
14 fvprc 6850 . . . 4 𝐶 ∈ V → (Homf𝐶) = ∅)
15 fvprc 6850 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
163, 15eqtrid 2776 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
1716olcd 874 . . . . 5 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
18 0mpo0 7472 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = ∅)
1917, 18syl 17 . . . 4 𝐶 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = ∅)
2014, 19eqtr4d 2767 . . 3 𝐶 ∈ V → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
2113, 20pm2.61i 182 . 2 (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
221, 21eqtri 2752 1 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  Homf chomf 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-homf 17631
This theorem is referenced by:  fnhomeqhomf  17652  homfval  17653  homffn  17654  homfeq  17655  oppchomf  17681  reschomf  17793  homf0  48998
  Copyright terms: Public domain W3C validator