| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homffval | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
| Ref | Expression |
|---|---|
| homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| homffval | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | . 2 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 2 | fveq2 6828 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 3 | homffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 5 | fveq2 6828 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
| 6 | homffval.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
| 8 | 7 | oveqd 7369 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
| 9 | 4, 4, 8 | mpoeq123dv 7427 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 10 | df-homf 17578 | . . . 4 ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | |
| 11 | 3 | fvexi 6842 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | 11, 11 | mpoex 8017 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) ∈ V |
| 13 | 9, 10, 12 | fvmpt 6935 | . . 3 ⊢ (𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 14 | fvprc 6820 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = ∅) | |
| 15 | fvprc 6820 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 16 | 3, 15 | eqtrid 2780 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
| 17 | 16 | olcd 874 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
| 18 | 0mpo0 7435 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) |
| 20 | 14, 19 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| 22 | 1, 21 | eqtri 2756 | 1 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Basecbs 17122 Hom chom 17174 Homf chomf 17574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-homf 17578 |
| This theorem is referenced by: fnhomeqhomf 17599 homfval 17600 homffn 17601 homfeq 17602 oppchomf 17628 reschomf 17740 homf0 49134 |
| Copyright terms: Public domain | W3C validator |