MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homffval Structured version   Visualization version   GIF version

Theorem homffval 17399
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
homffval 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem homffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homffval.f . 2 𝐹 = (Homf𝐶)
2 fveq2 6774 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 homffval.b . . . . . 6 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2796 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6774 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 homffval.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2796 . . . . . 6 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7292 . . . . 5 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦))
94, 4, 8mpoeq123dv 7350 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
10 df-homf 17379 . . . 4 Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)))
113fvexi 6788 . . . . 5 𝐵 ∈ V
1211, 11mpoex 7920 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) ∈ V
139, 10, 12fvmpt 6875 . . 3 (𝐶 ∈ V → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
14 fvprc 6766 . . . 4 𝐶 ∈ V → (Homf𝐶) = ∅)
15 fvprc 6766 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
163, 15eqtrid 2790 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
1716olcd 871 . . . . 5 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
18 0mpo0 7358 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = ∅)
1917, 18syl 17 . . . 4 𝐶 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = ∅)
2014, 19eqtr4d 2781 . . 3 𝐶 ∈ V → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
2113, 20pm2.61i 182 . 2 (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
221, 21eqtri 2766 1 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  Hom chom 16973  Homf chomf 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-homf 17379
This theorem is referenced by:  fnhomeqhomf  17400  homfval  17401  homffn  17402  homfeq  17403  oppchomf  17431  reschomf  17544
  Copyright terms: Public domain W3C validator