MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homffval Structured version   Visualization version   GIF version

Theorem homffval 17316
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
homffval 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem homffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 homffval.f . 2 𝐹 = (Homf𝐶)
2 fveq2 6756 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 homffval.b . . . . . 6 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2797 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6756 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 homffval.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2797 . . . . . 6 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7272 . . . . 5 (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦))
94, 4, 8mpoeq123dv 7328 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
10 df-homf 17296 . . . 4 Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)))
113fvexi 6770 . . . . 5 𝐵 ∈ V
1211, 11mpoex 7893 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) ∈ V
139, 10, 12fvmpt 6857 . . 3 (𝐶 ∈ V → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
14 fvprc 6748 . . . 4 𝐶 ∈ V → (Homf𝐶) = ∅)
15 fvprc 6748 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
163, 15eqtrid 2790 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
1716olcd 870 . . . . 5 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
18 0mpo0 7336 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = ∅)
1917, 18syl 17 . . . 4 𝐶 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = ∅)
2014, 19eqtr4d 2781 . . 3 𝐶 ∈ V → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
2113, 20pm2.61i 182 . 2 (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
221, 21eqtri 2766 1 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  Hom chom 16899  Homf chomf 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-homf 17296
This theorem is referenced by:  fnhomeqhomf  17317  homfval  17318  homffn  17319  homfeq  17320  oppchomf  17348  reschomf  17461
  Copyright terms: Public domain W3C validator