![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homffval | Structured version Visualization version GIF version |
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
Ref | Expression |
---|---|
homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
homffval | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffval.f | . 2 ⊢ 𝐹 = (Homf ‘𝐶) | |
2 | fveq2 6888 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | homffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | eqtr4di 2790 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6888 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | homffval.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | eqtr4di 2790 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 7422 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7480 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
10 | df-homf 17610 | . . . 4 ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | |
11 | 3 | fvexi 6902 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | 11, 11 | mpoex 8062 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) ∈ V |
13 | 9, 10, 12 | fvmpt 6995 | . . 3 ⊢ (𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
14 | fvprc 6880 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = ∅) | |
15 | fvprc 6880 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
16 | 3, 15 | eqtrid 2784 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
17 | 16 | olcd 872 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
18 | 0mpo0 7488 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) |
20 | 14, 19 | eqtr4d 2775 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
22 | 1, 21 | eqtri 2760 | 1 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17140 Hom chom 17204 Homf chomf 17606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-homf 17610 |
This theorem is referenced by: fnhomeqhomf 17631 homfval 17632 homffn 17633 homfeq 17634 oppchomf 17662 reschomf 17775 |
Copyright terms: Public domain | W3C validator |