![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homffval | Structured version Visualization version GIF version |
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
Ref | Expression |
---|---|
homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
homffval | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffval.f | . 2 ⊢ 𝐹 = (Homf ‘𝐶) | |
2 | fveq2 6907 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | homffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | eqtr4di 2793 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6907 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | homffval.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | eqtr4di 2793 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 7448 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7508 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
10 | df-homf 17715 | . . . 4 ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | |
11 | 3 | fvexi 6921 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | 11, 11 | mpoex 8103 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) ∈ V |
13 | 9, 10, 12 | fvmpt 7016 | . . 3 ⊢ (𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
14 | fvprc 6899 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = ∅) | |
15 | fvprc 6899 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
16 | 3, 15 | eqtrid 2787 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
17 | 16 | olcd 874 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
18 | 0mpo0 7516 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = ∅) |
20 | 14, 19 | eqtr4d 2778 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
22 | 1, 21 | eqtri 2763 | 1 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17245 Hom chom 17309 Homf chomf 17711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-homf 17715 |
This theorem is referenced by: fnhomeqhomf 17736 homfval 17737 homffn 17738 homfeq 17739 oppchomf 17767 reschomf 17880 |
Copyright terms: Public domain | W3C validator |