MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cid Structured version   Visualization version   GIF version

Definition df-cid 17677
Description: Define the category identity arrow. Since it is uniquely defined when it exists, we do not need to add it to the data of the category, and instead extract it by uniqueness. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
df-cid Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
Distinct variable group:   𝑏,𝑐,𝑓,𝑔,,𝑜,𝑥,𝑦

Detailed syntax breakdown of Definition df-cid
StepHypRef Expression
1 ccid 17673 . 2 class Id
2 vc . . 3 setvar 𝑐
3 ccat 17672 . . 3 class Cat
4 vb . . . 4 setvar 𝑏
52cv 1532 . . . . 5 class 𝑐
6 cbs 17208 . . . . 5 class Base
75, 6cfv 6553 . . . 4 class (Base‘𝑐)
8 vh . . . . 5 setvar
9 chom 17272 . . . . . 6 class Hom
105, 9cfv 6553 . . . . 5 class (Hom ‘𝑐)
11 vo . . . . . 6 setvar 𝑜
12 cco 17273 . . . . . . 7 class comp
135, 12cfv 6553 . . . . . 6 class (comp‘𝑐)
14 vx . . . . . . 7 setvar 𝑥
154cv 1532 . . . . . . 7 class 𝑏
16 vg . . . . . . . . . . . . . 14 setvar 𝑔
1716cv 1532 . . . . . . . . . . . . 13 class 𝑔
18 vf . . . . . . . . . . . . . 14 setvar 𝑓
1918cv 1532 . . . . . . . . . . . . 13 class 𝑓
20 vy . . . . . . . . . . . . . . . 16 setvar 𝑦
2120cv 1532 . . . . . . . . . . . . . . 15 class 𝑦
2214cv 1532 . . . . . . . . . . . . . . 15 class 𝑥
2321, 22cop 4638 . . . . . . . . . . . . . 14 class 𝑦, 𝑥
2411cv 1532 . . . . . . . . . . . . . 14 class 𝑜
2523, 22, 24co 7423 . . . . . . . . . . . . 13 class (⟨𝑦, 𝑥𝑜𝑥)
2617, 19, 25co 7423 . . . . . . . . . . . 12 class (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓)
2726, 19wceq 1533 . . . . . . . . . . 11 wff (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
288cv 1532 . . . . . . . . . . . 12 class
2921, 22, 28co 7423 . . . . . . . . . . 11 class (𝑦𝑥)
3027, 18, 29wral 3050 . . . . . . . . . 10 wff 𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
3122, 22cop 4638 . . . . . . . . . . . . . 14 class 𝑥, 𝑥
3231, 21, 24co 7423 . . . . . . . . . . . . 13 class (⟨𝑥, 𝑥𝑜𝑦)
3319, 17, 32co 7423 . . . . . . . . . . . 12 class (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔)
3433, 19wceq 1533 . . . . . . . . . . 11 wff (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
3522, 21, 28co 7423 . . . . . . . . . . 11 class (𝑥𝑦)
3634, 18, 35wral 3050 . . . . . . . . . 10 wff 𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
3730, 36wa 394 . . . . . . . . 9 wff (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
3837, 20, 15wral 3050 . . . . . . . 8 wff 𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
3922, 22, 28co 7423 . . . . . . . 8 class (𝑥𝑥)
4038, 16, 39crio 7378 . . . . . . 7 class (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))
4114, 15, 40cmpt 5235 . . . . . 6 class (𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
4211, 13, 41csb 3891 . . . . 5 class (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
438, 10, 42csb 3891 . . . 4 class (Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
444, 7, 43csb 3891 . . 3 class (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
452, 3, 44cmpt 5235 . 2 class (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
461, 45wceq 1533 1 wff Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
Colors of variables: wff setvar class
This definition is referenced by:  cidfval  17684  cidffn  17686
  Copyright terms: Public domain W3C validator