Detailed syntax breakdown of Definition df-htpy
Step | Hyp | Ref
| Expression |
1 | | chtpy 24036 |
. 2
class
Htpy |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | ctop 21950 |
. . 3
class
Top |
5 | | vf |
. . . 4
setvar 𝑓 |
6 | | vg |
. . . 4
setvar 𝑔 |
7 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
8 | 3 | cv 1538 |
. . . . 5
class 𝑦 |
9 | | ccn 22283 |
. . . . 5
class
Cn |
10 | 7, 8, 9 | co 7255 |
. . . 4
class (𝑥 Cn 𝑦) |
11 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
12 | 11 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
13 | | cc0 10802 |
. . . . . . . . 9
class
0 |
14 | | vh |
. . . . . . . . . 10
setvar ℎ |
15 | 14 | cv 1538 |
. . . . . . . . 9
class ℎ |
16 | 12, 13, 15 | co 7255 |
. . . . . . . 8
class (𝑠ℎ0) |
17 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
18 | 12, 17 | cfv 6418 |
. . . . . . . 8
class (𝑓‘𝑠) |
19 | 16, 18 | wceq 1539 |
. . . . . . 7
wff (𝑠ℎ0) = (𝑓‘𝑠) |
20 | | c1 10803 |
. . . . . . . . 9
class
1 |
21 | 12, 20, 15 | co 7255 |
. . . . . . . 8
class (𝑠ℎ1) |
22 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
23 | 12, 22 | cfv 6418 |
. . . . . . . 8
class (𝑔‘𝑠) |
24 | 21, 23 | wceq 1539 |
. . . . . . 7
wff (𝑠ℎ1) = (𝑔‘𝑠) |
25 | 19, 24 | wa 395 |
. . . . . 6
wff ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) |
26 | 7 | cuni 4836 |
. . . . . 6
class ∪ 𝑥 |
27 | 25, 11, 26 | wral 3063 |
. . . . 5
wff
∀𝑠 ∈
∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) |
28 | | cii 23944 |
. . . . . . 7
class
II |
29 | | ctx 22619 |
. . . . . . 7
class
×t |
30 | 7, 28, 29 | co 7255 |
. . . . . 6
class (𝑥 ×t
II) |
31 | 30, 8, 9 | co 7255 |
. . . . 5
class ((𝑥 ×t II) Cn
𝑦) |
32 | 27, 14, 31 | crab 3067 |
. . . 4
class {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} |
33 | 5, 6, 10, 10, 32 | cmpo 7257 |
. . 3
class (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) |
34 | 2, 3, 4, 4, 33 | cmpo 7257 |
. 2
class (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
35 | 1, 34 | wceq 1539 |
1
wff Htpy =
(𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |