Detailed syntax breakdown of Definition df-htpy
| Step | Hyp | Ref
| Expression |
| 1 | | chtpy 24999 |
. 2
class
Htpy |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | ctop 22899 |
. . 3
class
Top |
| 5 | | vf |
. . . 4
setvar 𝑓 |
| 6 | | vg |
. . . 4
setvar 𝑔 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 8 | 3 | cv 1539 |
. . . . 5
class 𝑦 |
| 9 | | ccn 23232 |
. . . . 5
class
Cn |
| 10 | 7, 8, 9 | co 7431 |
. . . 4
class (𝑥 Cn 𝑦) |
| 11 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑠 |
| 13 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 14 | | vh |
. . . . . . . . . 10
setvar ℎ |
| 15 | 14 | cv 1539 |
. . . . . . . . 9
class ℎ |
| 16 | 12, 13, 15 | co 7431 |
. . . . . . . 8
class (𝑠ℎ0) |
| 17 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 18 | 12, 17 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑠) |
| 19 | 16, 18 | wceq 1540 |
. . . . . . 7
wff (𝑠ℎ0) = (𝑓‘𝑠) |
| 20 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 21 | 12, 20, 15 | co 7431 |
. . . . . . . 8
class (𝑠ℎ1) |
| 22 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 23 | 12, 22 | cfv 6561 |
. . . . . . . 8
class (𝑔‘𝑠) |
| 24 | 21, 23 | wceq 1540 |
. . . . . . 7
wff (𝑠ℎ1) = (𝑔‘𝑠) |
| 25 | 19, 24 | wa 395 |
. . . . . 6
wff ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) |
| 26 | 7 | cuni 4907 |
. . . . . 6
class ∪ 𝑥 |
| 27 | 25, 11, 26 | wral 3061 |
. . . . 5
wff
∀𝑠 ∈
∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) |
| 28 | | cii 24901 |
. . . . . . 7
class
II |
| 29 | | ctx 23568 |
. . . . . . 7
class
×t |
| 30 | 7, 28, 29 | co 7431 |
. . . . . 6
class (𝑥 ×t
II) |
| 31 | 30, 8, 9 | co 7431 |
. . . . 5
class ((𝑥 ×t II) Cn
𝑦) |
| 32 | 27, 14, 31 | crab 3436 |
. . . 4
class {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} |
| 33 | 5, 6, 10, 10, 32 | cmpo 7433 |
. . 3
class (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) |
| 34 | 2, 3, 4, 4, 33 | cmpo 7433 |
. 2
class (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
| 35 | 1, 34 | wceq 1540 |
1
wff Htpy =
(𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |