| Step | Hyp | Ref
| Expression |
| 1 | | df-htpy 24937 |
. . . . . 6
⊢ Htpy =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → Htpy = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}))) |
| 3 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) |
| 4 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) |
| 5 | 3, 4 | oveq12d 7430 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾)) |
| 6 | 3 | oveq1d 7427 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑗 ×t II) = (𝐽 ×t II)) |
| 7 | 6, 4 | oveq12d 7430 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ((𝑗 ×t II) Cn 𝑘) = ((𝐽 ×t II) Cn 𝐾)) |
| 8 | 3 | unieqd 4900 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) |
| 9 | | ishtpy.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 10 | | toponuni 22867 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 12 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) |
| 13 | 8, 12 | eqtr4d 2772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) |
| 14 | 13 | raleqdv 3309 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)))) |
| 15 | 7, 14 | rabeqbidv 3438 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} = {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) |
| 16 | 5, 5, 15 | mpoeq123dv 7489 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
| 17 | | topontop 22866 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 18 | 9, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
| 19 | | ishtpy.3 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 20 | | cntop2 23194 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| 21 | 19, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Top) |
| 22 | | ovex 7445 |
. . . . . . . . . 10
⊢ ((𝐽 ×t II) Cn
𝐾) ∈
V |
| 23 | | ssrab2 4060 |
. . . . . . . . . 10
⊢ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ⊆ ((𝐽 ×t II) Cn 𝐾) |
| 24 | 22, 23 | elpwi2 5315 |
. . . . . . . . 9
⊢ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) |
| 25 | 24 | rgen2w 3055 |
. . . . . . . 8
⊢
∀𝑓 ∈
(𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) |
| 26 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) |
| 27 | 26 | fmpo 8074 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾)) |
| 28 | 25, 27 | mpbi 230 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾) |
| 29 | | ovex 7445 |
. . . . . . . 8
⊢ (𝐽 Cn 𝐾) ∈ V |
| 30 | 29, 29 | xpex 7754 |
. . . . . . 7
⊢ ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V |
| 31 | 22 | pwex 5360 |
. . . . . . 7
⊢ 𝒫
((𝐽 ×t II)
Cn 𝐾) ∈
V |
| 32 | | fex2 7939 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾) ∧ ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V ∧ 𝒫 ((𝐽 ×t II) Cn
𝐾) ∈ V) → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) ∈ V) |
| 33 | 28, 30, 31, 32 | mp3an 1462 |
. . . . . 6
⊢ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) ∈ V |
| 34 | 33 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) ∈ V) |
| 35 | 2, 16, 18, 21, 34 | ovmpod 7566 |
. . . 4
⊢ (𝜑 → (𝐽 Htpy 𝐾) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
| 36 | | fveq1 6884 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑠) = (𝐹‘𝑠)) |
| 37 | 36 | eqeq2d 2745 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑠ℎ0) = (𝑓‘𝑠) ↔ (𝑠ℎ0) = (𝐹‘𝑠))) |
| 38 | | fveq1 6884 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘𝑠) = (𝐺‘𝑠)) |
| 39 | 38 | eqeq2d 2745 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑠ℎ1) = (𝑔‘𝑠) ↔ (𝑠ℎ1) = (𝐺‘𝑠))) |
| 40 | 37, 39 | bi2anan9 638 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)))) |
| 41 | 40 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)))) |
| 42 | 41 | ralbidv 3165 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)))) |
| 43 | 42 | rabbidv 3427 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} = {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))}) |
| 44 | | ishtpy.4 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| 45 | 22 | rabex 5319 |
. . . . 5
⊢ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))} ∈ V |
| 46 | 45 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))} ∈ V) |
| 47 | 35, 43, 19, 44, 46 | ovmpod 7566 |
. . 3
⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) = {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))}) |
| 48 | 47 | eleq2d 2819 |
. 2
⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ 𝐻 ∈ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))})) |
| 49 | | oveq 7418 |
. . . . . 6
⊢ (ℎ = 𝐻 → (𝑠ℎ0) = (𝑠𝐻0)) |
| 50 | 49 | eqeq1d 2736 |
. . . . 5
⊢ (ℎ = 𝐻 → ((𝑠ℎ0) = (𝐹‘𝑠) ↔ (𝑠𝐻0) = (𝐹‘𝑠))) |
| 51 | | oveq 7418 |
. . . . . 6
⊢ (ℎ = 𝐻 → (𝑠ℎ1) = (𝑠𝐻1)) |
| 52 | 51 | eqeq1d 2736 |
. . . . 5
⊢ (ℎ = 𝐻 → ((𝑠ℎ1) = (𝐺‘𝑠) ↔ (𝑠𝐻1) = (𝐺‘𝑠))) |
| 53 | 50, 52 | anbi12d 632 |
. . . 4
⊢ (ℎ = 𝐻 → (((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)) ↔ ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
| 54 | 53 | ralbidv 3165 |
. . 3
⊢ (ℎ = 𝐻 → (∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)) ↔ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
| 55 | 54 | elrab 3675 |
. 2
⊢ (𝐻 ∈ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))} ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
| 56 | 48, 55 | bitrdi 287 |
1
⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |