MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpy Structured version   Visualization version   GIF version

Theorem ishtpy 24335
Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
ishtpy (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠   𝑋,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem ishtpy
Dummy variables 𝑓 𝑔 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-htpy 24333 . . . . . 6 Htpy = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
21a1i 11 . . . . 5 (𝜑 → Htpy = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))})))
3 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
4 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
53, 4oveq12d 7375 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾))
63oveq1d 7372 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑗 ×t II) = (𝐽 ×t II))
76, 4oveq12d 7375 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ((𝑗 ×t II) Cn 𝑘) = ((𝐽 ×t II) Cn 𝐾))
83unieqd 4879 . . . . . . . . 9 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
9 ishtpy.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
10 toponuni 22263 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1211adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
138, 12eqtr4d 2779 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
1413raleqdv 3313 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))))
157, 14rabeqbidv 3424 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} = { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))})
165, 5, 15mpoeq123dv 7432 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
17 topontop 22262 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
189, 17syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
19 ishtpy.3 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
20 cntop2 22592 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2119, 20syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
22 ovex 7390 . . . . . . . . . 10 ((𝐽 ×t II) Cn 𝐾) ∈ V
23 ssrab2 4037 . . . . . . . . . 10 { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ⊆ ((𝐽 ×t II) Cn 𝐾)
2422, 23elpwi2 5303 . . . . . . . . 9 { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾)
2524rgen2w 3069 . . . . . . . 8 𝑓 ∈ (𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾)
26 eqid 2736 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))})
2726fmpo 8000 . . . . . . . 8 (∀𝑓 ∈ (𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾))
2825, 27mpbi 229 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾)
29 ovex 7390 . . . . . . . 8 (𝐽 Cn 𝐾) ∈ V
3029, 29xpex 7687 . . . . . . 7 ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V
3122pwex 5335 . . . . . . 7 𝒫 ((𝐽 ×t II) Cn 𝐾) ∈ V
32 fex2 7870 . . . . . . 7 (((𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾) ∧ ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V ∧ 𝒫 ((𝐽 ×t II) Cn 𝐾) ∈ V) → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) ∈ V)
3328, 30, 31, 32mp3an 1461 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) ∈ V)
352, 16, 18, 21, 34ovmpod 7507 . . . 4 (𝜑 → (𝐽 Htpy 𝐾) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
36 fveq1 6841 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑠) = (𝐹𝑠))
3736eqeq2d 2747 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑠0) = (𝑓𝑠) ↔ (𝑠0) = (𝐹𝑠)))
38 fveq1 6841 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑔𝑠) = (𝐺𝑠))
3938eqeq2d 2747 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑠1) = (𝑔𝑠) ↔ (𝑠1) = (𝐺𝑠)))
4037, 39bi2anan9 637 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))))
4140adantl 482 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))))
4241ralbidv 3174 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))))
4342rabbidv 3415 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} = { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))})
44 ishtpy.4 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
4522rabex 5289 . . . . 5 { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))} ∈ V
4645a1i 11 . . . 4 (𝜑 → { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))} ∈ V)
4735, 43, 19, 44, 46ovmpod 7507 . . 3 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) = { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))})
4847eleq2d 2823 . 2 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ 𝐻 ∈ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))}))
49 oveq 7363 . . . . . 6 ( = 𝐻 → (𝑠0) = (𝑠𝐻0))
5049eqeq1d 2738 . . . . 5 ( = 𝐻 → ((𝑠0) = (𝐹𝑠) ↔ (𝑠𝐻0) = (𝐹𝑠)))
51 oveq 7363 . . . . . 6 ( = 𝐻 → (𝑠1) = (𝑠𝐻1))
5251eqeq1d 2738 . . . . 5 ( = 𝐻 → ((𝑠1) = (𝐺𝑠) ↔ (𝑠𝐻1) = (𝐺𝑠)))
5350, 52anbi12d 631 . . . 4 ( = 𝐻 → (((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)) ↔ ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
5453ralbidv 3174 . . 3 ( = 𝐻 → (∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)) ↔ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
5554elrab 3645 . 2 (𝐻 ∈ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))} ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
5648, 55bitrdi 286 1 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  𝒫 cpw 4560   cuni 4865   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911  IIcii 24238   Htpy chtpy 24330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-top 22243  df-topon 22260  df-cn 22578  df-htpy 24333
This theorem is referenced by:  htpycn  24336  htpyi  24337  ishtpyd  24338
  Copyright terms: Public domain W3C validator