Detailed syntax breakdown of Definition df-phtpy
| Step | Hyp | Ref
| Expression |
| 1 | | cphtpy 25000 |
. 2
class
PHtpy |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | ctop 22899 |
. . 3
class
Top |
| 4 | | vf |
. . . 4
setvar 𝑓 |
| 5 | | vg |
. . . 4
setvar 𝑔 |
| 6 | | cii 24901 |
. . . . 5
class
II |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 8 | | ccn 23232 |
. . . . 5
class
Cn |
| 9 | 6, 7, 8 | co 7431 |
. . . 4
class (II Cn
𝑥) |
| 10 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 11 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑠 |
| 13 | | vh |
. . . . . . . . . 10
setvar ℎ |
| 14 | 13 | cv 1539 |
. . . . . . . . 9
class ℎ |
| 15 | 10, 12, 14 | co 7431 |
. . . . . . . 8
class (0ℎ𝑠) |
| 16 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 17 | 10, 16 | cfv 6561 |
. . . . . . . 8
class (𝑓‘0) |
| 18 | 15, 17 | wceq 1540 |
. . . . . . 7
wff (0ℎ𝑠) = (𝑓‘0) |
| 19 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 20 | 19, 12, 14 | co 7431 |
. . . . . . . 8
class (1ℎ𝑠) |
| 21 | 19, 16 | cfv 6561 |
. . . . . . . 8
class (𝑓‘1) |
| 22 | 20, 21 | wceq 1540 |
. . . . . . 7
wff (1ℎ𝑠) = (𝑓‘1) |
| 23 | 18, 22 | wa 395 |
. . . . . 6
wff ((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1)) |
| 24 | | cicc 13390 |
. . . . . . 7
class
[,] |
| 25 | 10, 19, 24 | co 7431 |
. . . . . 6
class
(0[,]1) |
| 26 | 23, 11, 25 | wral 3061 |
. . . . 5
wff
∀𝑠 ∈
(0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1)) |
| 27 | 5 | cv 1539 |
. . . . . 6
class 𝑔 |
| 28 | | chtpy 24999 |
. . . . . . 7
class
Htpy |
| 29 | 6, 7, 28 | co 7431 |
. . . . . 6
class (II Htpy
𝑥) |
| 30 | 16, 27, 29 | co 7431 |
. . . . 5
class (𝑓(II Htpy 𝑥)𝑔) |
| 31 | 26, 13, 30 | crab 3436 |
. . . 4
class {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))} |
| 32 | 4, 5, 9, 9, 31 | cmpo 7433 |
. . 3
class (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))}) |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
| 34 | 1, 33 | wceq 1540 |
1
wff PHtpy =
(𝑥 ∈ Top ↦
(𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |