Detailed syntax breakdown of Definition df-phtpy
Step | Hyp | Ref
| Expression |
1 | | cphtpy 24037 |
. 2
class
PHtpy |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | ctop 21950 |
. . 3
class
Top |
4 | | vf |
. . . 4
setvar 𝑓 |
5 | | vg |
. . . 4
setvar 𝑔 |
6 | | cii 23944 |
. . . . 5
class
II |
7 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
8 | | ccn 22283 |
. . . . 5
class
Cn |
9 | 6, 7, 8 | co 7255 |
. . . 4
class (II Cn
𝑥) |
10 | | cc0 10802 |
. . . . . . . . 9
class
0 |
11 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
12 | 11 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
13 | | vh |
. . . . . . . . . 10
setvar ℎ |
14 | 13 | cv 1538 |
. . . . . . . . 9
class ℎ |
15 | 10, 12, 14 | co 7255 |
. . . . . . . 8
class (0ℎ𝑠) |
16 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
17 | 10, 16 | cfv 6418 |
. . . . . . . 8
class (𝑓‘0) |
18 | 15, 17 | wceq 1539 |
. . . . . . 7
wff (0ℎ𝑠) = (𝑓‘0) |
19 | | c1 10803 |
. . . . . . . . 9
class
1 |
20 | 19, 12, 14 | co 7255 |
. . . . . . . 8
class (1ℎ𝑠) |
21 | 19, 16 | cfv 6418 |
. . . . . . . 8
class (𝑓‘1) |
22 | 20, 21 | wceq 1539 |
. . . . . . 7
wff (1ℎ𝑠) = (𝑓‘1) |
23 | 18, 22 | wa 395 |
. . . . . 6
wff ((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1)) |
24 | | cicc 13011 |
. . . . . . 7
class
[,] |
25 | 10, 19, 24 | co 7255 |
. . . . . 6
class
(0[,]1) |
26 | 23, 11, 25 | wral 3063 |
. . . . 5
wff
∀𝑠 ∈
(0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1)) |
27 | 5 | cv 1538 |
. . . . . 6
class 𝑔 |
28 | | chtpy 24036 |
. . . . . . 7
class
Htpy |
29 | 6, 7, 28 | co 7255 |
. . . . . 6
class (II Htpy
𝑥) |
30 | 16, 27, 29 | co 7255 |
. . . . 5
class (𝑓(II Htpy 𝑥)𝑔) |
31 | 26, 13, 30 | crab 3067 |
. . . 4
class {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))} |
32 | 4, 5, 9, 9, 31 | cmpo 7257 |
. . 3
class (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))}) |
33 | 2, 3, 32 | cmpt 5153 |
. 2
class (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
34 | 1, 33 | wceq 1539 |
1
wff PHtpy =
(𝑥 ∈ Top ↦
(𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |