Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-hvmap Structured version   Visualization version   GIF version

Definition df-hvmap 40616
Description: Extend class notation with a map from each nonzero vector π‘₯ to a unique nonzero functional in the closed kernel dual space. (We could extend it to include the zero vector, but that is unnecessary for our purposes.) TODO: This pattern is used several times earlier, e.g., lcf1o 40410, dochfl1 40335- should we update those to use this definition? (Contributed by NM, 23-Mar-2015.)
Assertion
Ref Expression
df-hvmap HVMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))))
Distinct variable group:   𝑀,π‘˜,π‘₯,𝑣,𝑗,𝑑

Detailed syntax breakdown of Definition df-hvmap
StepHypRef Expression
1 chvm 40615 . 2 class HVMap
2 vk . . 3 setvar π‘˜
3 cvv 3474 . . 3 class V
4 vw . . . 4 setvar 𝑀
52cv 1540 . . . . 5 class π‘˜
6 clh 38843 . . . . 5 class LHyp
75, 6cfv 6540 . . . 4 class (LHypβ€˜π‘˜)
8 vx . . . . 5 setvar π‘₯
94cv 1540 . . . . . . . 8 class 𝑀
10 cdvh 39937 . . . . . . . . 9 class DVecH
115, 10cfv 6540 . . . . . . . 8 class (DVecHβ€˜π‘˜)
129, 11cfv 6540 . . . . . . 7 class ((DVecHβ€˜π‘˜)β€˜π‘€)
13 cbs 17140 . . . . . . 7 class Base
1412, 13cfv 6540 . . . . . 6 class (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))
15 c0g 17381 . . . . . . . 8 class 0g
1612, 15cfv 6540 . . . . . . 7 class (0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))
1716csn 4627 . . . . . 6 class {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}
1814, 17cdif 3944 . . . . 5 class ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))})
19 vv . . . . . 6 setvar 𝑣
2019cv 1540 . . . . . . . . 9 class 𝑣
21 vt . . . . . . . . . . 11 setvar 𝑑
2221cv 1540 . . . . . . . . . 10 class 𝑑
23 vj . . . . . . . . . . . 12 setvar 𝑗
2423cv 1540 . . . . . . . . . . 11 class 𝑗
258cv 1540 . . . . . . . . . . 11 class π‘₯
26 cvsca 17197 . . . . . . . . . . . 12 class ·𝑠
2712, 26cfv 6540 . . . . . . . . . . 11 class ( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))
2824, 25, 27co 7405 . . . . . . . . . 10 class (𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)
29 cplusg 17193 . . . . . . . . . . 11 class +g
3012, 29cfv 6540 . . . . . . . . . 10 class (+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))
3122, 28, 30co 7405 . . . . . . . . 9 class (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))
3220, 31wceq 1541 . . . . . . . 8 wff 𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))
3325csn 4627 . . . . . . . . 9 class {π‘₯}
34 coch 40206 . . . . . . . . . . 11 class ocH
355, 34cfv 6540 . . . . . . . . . 10 class (ocHβ€˜π‘˜)
369, 35cfv 6540 . . . . . . . . 9 class ((ocHβ€˜π‘˜)β€˜π‘€)
3733, 36cfv 6540 . . . . . . . 8 class (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})
3832, 21, 37wrex 3070 . . . . . . 7 wff βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))
39 csca 17196 . . . . . . . . 9 class Scalar
4012, 39cfv 6540 . . . . . . . 8 class (Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))
4140, 13cfv 6540 . . . . . . 7 class (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))
4238, 23, 41crio 7360 . . . . . 6 class (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))
4319, 14, 42cmpt 5230 . . . . 5 class (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))))
448, 18, 43cmpt 5230 . . . 4 class (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))
454, 7, 44cmpt 5230 . . 3 class (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))))))
462, 3, 45cmpt 5230 . 2 class (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))))
471, 46wceq 1541 1 wff HVMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))))
Colors of variables: wff setvar class
This definition is referenced by:  hvmapffval  40617
  Copyright terms: Public domain W3C validator