Step | Hyp | Ref
| Expression |
1 | | chvm 40615 |
. 2
class
HVMap |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1540 |
. . . . 5
class π |
6 | | clh 38843 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6540 |
. . . 4
class
(LHypβπ) |
8 | | vx |
. . . . 5
setvar π₯ |
9 | 4 | cv 1540 |
. . . . . . . 8
class π€ |
10 | | cdvh 39937 |
. . . . . . . . 9
class
DVecH |
11 | 5, 10 | cfv 6540 |
. . . . . . . 8
class
(DVecHβπ) |
12 | 9, 11 | cfv 6540 |
. . . . . . 7
class
((DVecHβπ)βπ€) |
13 | | cbs 17140 |
. . . . . . 7
class
Base |
14 | 12, 13 | cfv 6540 |
. . . . . 6
class
(Baseβ((DVecHβπ)βπ€)) |
15 | | c0g 17381 |
. . . . . . . 8
class
0g |
16 | 12, 15 | cfv 6540 |
. . . . . . 7
class
(0gβ((DVecHβπ)βπ€)) |
17 | 16 | csn 4627 |
. . . . . 6
class
{(0gβ((DVecHβπ)βπ€))} |
18 | 14, 17 | cdif 3944 |
. . . . 5
class
((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) |
19 | | vv |
. . . . . 6
setvar π£ |
20 | 19 | cv 1540 |
. . . . . . . . 9
class π£ |
21 | | vt |
. . . . . . . . . . 11
setvar π‘ |
22 | 21 | cv 1540 |
. . . . . . . . . 10
class π‘ |
23 | | vj |
. . . . . . . . . . . 12
setvar π |
24 | 23 | cv 1540 |
. . . . . . . . . . 11
class π |
25 | 8 | cv 1540 |
. . . . . . . . . . 11
class π₯ |
26 | | cvsca 17197 |
. . . . . . . . . . . 12
class
Β·π |
27 | 12, 26 | cfv 6540 |
. . . . . . . . . . 11
class (
Β·π β((DVecHβπ)βπ€)) |
28 | 24, 25, 27 | co 7405 |
. . . . . . . . . 10
class (π(
Β·π β((DVecHβπ)βπ€))π₯) |
29 | | cplusg 17193 |
. . . . . . . . . . 11
class
+g |
30 | 12, 29 | cfv 6540 |
. . . . . . . . . 10
class
(+gβ((DVecHβπ)βπ€)) |
31 | 22, 28, 30 | co 7405 |
. . . . . . . . 9
class (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)) |
32 | 20, 31 | wceq 1541 |
. . . . . . . 8
wff π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)) |
33 | 25 | csn 4627 |
. . . . . . . . 9
class {π₯} |
34 | | coch 40206 |
. . . . . . . . . . 11
class
ocH |
35 | 5, 34 | cfv 6540 |
. . . . . . . . . 10
class
(ocHβπ) |
36 | 9, 35 | cfv 6540 |
. . . . . . . . 9
class
((ocHβπ)βπ€) |
37 | 33, 36 | cfv 6540 |
. . . . . . . 8
class
(((ocHβπ)βπ€)β{π₯}) |
38 | 32, 21, 37 | wrex 3070 |
. . . . . . 7
wff
βπ‘ β
(((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)) |
39 | | csca 17196 |
. . . . . . . . 9
class
Scalar |
40 | 12, 39 | cfv 6540 |
. . . . . . . 8
class
(Scalarβ((DVecHβπ)βπ€)) |
41 | 40, 13 | cfv 6540 |
. . . . . . 7
class
(Baseβ(Scalarβ((DVecHβπ)βπ€))) |
42 | 38, 23, 41 | crio 7360 |
. . . . . 6
class
(β©π
β (Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))) |
43 | 19, 14, 42 | cmpt 5230 |
. . . . 5
class (π£ β
(Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)))) |
44 | 8, 18, 43 | cmpt 5230 |
. . . 4
class (π₯ β
((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))))) |
45 | 4, 7, 44 | cmpt 5230 |
. . 3
class (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)))))) |
46 | 2, 3, 45 | cmpt 5230 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))))))) |
47 | 1, 46 | wceq 1541 |
1
wff HVMap =
(π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))))))) |