Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcf1o Structured version   Visualization version   GIF version

Theorem lcf1o 39251
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcf1o (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   ,𝑓,𝑘,𝑣   𝑓,𝐿   𝑅,𝑓,𝑘,𝑣   𝑓,𝐹   𝑓,𝑉   · ,𝑓,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑤,𝑣,𝑓,𝑘)

Proof of Theorem lcf1o
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.h . 2 𝐻 = (LHyp‘𝐾)
2 lcf1o.o . 2 = ((ocH‘𝐾)‘𝑊)
3 lcf1o.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcf1o.v . 2 𝑉 = (Base‘𝑈)
5 lcf1o.a . 2 + = (+g𝑈)
6 lcf1o.t . 2 · = ( ·𝑠𝑈)
7 lcf1o.s . 2 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . 2 𝑅 = (Base‘𝑆)
9 lcf1o.z . 2 0 = (0g𝑈)
10 lcf1o.f . 2 𝐹 = (LFnl‘𝑈)
11 lcf1o.l . 2 𝐿 = (LKer‘𝑈)
12 lcf1o.d . 2 𝐷 = (LDual‘𝑈)
13 lcf1o.q . 2 𝑄 = (0g𝐷)
14 lcf1o.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
15 lcf1o.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
16 oveq1 7198 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥)))
1716eqeq2d 2747 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥))))
1817cbvrexvw 3349 . . . . . . . . 9 (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)))
19 oveq1 7198 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2019oveq2d 7207 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
2120eqeq2d 2747 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥))))
2221rexbidv 3206 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2318, 22syl5bb 286 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2423cbvriotavw 7158 . . . . . . 7 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))
25 eqeq1 2740 . . . . . . . . 9 (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
2625rexbidv 3206 . . . . . . . 8 (𝑣 = 𝑢 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2726riotabidv 7150 . . . . . . 7 (𝑣 = 𝑢 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2824, 27syl5eq 2783 . . . . . 6 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2928cbvmptv 5143 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
30 sneq 4537 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130fveq2d 6699 . . . . . . . 8 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
32 oveq2 7199 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦))
3332oveq2d 7207 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦)))
3433eqeq2d 2747 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
3531, 34rexeqbidv 3304 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3635riotabidv 7150 . . . . . 6 (𝑥 = 𝑦 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3736mpteq2dv 5136 . . . . 5 (𝑥 = 𝑦 → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3829, 37syl5eq 2783 . . . 4 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3938cbvmptv 5143 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
4015, 39eqtri 2759 . 2 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
41 lcflo.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41lcfrlem9 39250 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3052  {crab 3055  cdif 3850  {csn 4527  cmpt 5120  1-1-ontowf1o 6357  cfv 6358  crio 7147  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  Scalarcsca 16752   ·𝑠 cvsca 16753  0gc0g 16898  LFnlclfn 36757  LKerclk 36785  LDualcld 36823  HLchlt 37050  LHypclh 37684  DVecHcdvh 38778  ocHcoch 39047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-riotaBAD 36653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-undef 7993  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-0g 16900  df-proset 17756  df-poset 17774  df-plt 17790  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-p0 17885  df-p1 17886  df-lat 17892  df-clat 17959  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-cntz 18665  df-lsm 18979  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-dvr 19655  df-drng 19723  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lvec 20094  df-lsatoms 36676  df-lshyp 36677  df-lfl 36758  df-lkr 36786  df-ldual 36824  df-oposet 36876  df-ol 36878  df-oml 36879  df-covers 36966  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051  df-llines 37198  df-lplanes 37199  df-lvols 37200  df-lines 37201  df-psubsp 37203  df-pmap 37204  df-padd 37496  df-lhyp 37688  df-laut 37689  df-ldil 37804  df-ltrn 37805  df-trl 37859  df-tgrp 38443  df-tendo 38455  df-edring 38457  df-dveca 38703  df-disoa 38729  df-dvech 38779  df-dib 38839  df-dic 38873  df-dih 38929  df-doch 39048  df-djh 39095
This theorem is referenced by:  lcfrlem13  39255  hvmap1o  39463
  Copyright terms: Public domain W3C validator