Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcf1o | Structured version Visualization version GIF version |
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
Ref | Expression |
---|---|
lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
lcf1o.a | ⊢ + = (+g‘𝑈) |
lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
lcf1o.z | ⊢ 0 = (0g‘𝑈) |
lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcf1o | ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcf1o.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcf1o.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcf1o.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcf1o.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcf1o.a | . 2 ⊢ + = (+g‘𝑈) | |
6 | lcf1o.t | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | lcf1o.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcf1o.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
9 | lcf1o.z | . 2 ⊢ 0 = (0g‘𝑈) | |
10 | lcf1o.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
11 | lcf1o.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcf1o.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | lcf1o.q | . 2 ⊢ 𝑄 = (0g‘𝐷) | |
14 | lcf1o.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
15 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
16 | oveq1 7320 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥))) | |
17 | 16 | eqeq2d 2748 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥)))) |
18 | 17 | cbvrexvw 3223 | . . . . . . . . 9 ⊢ (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥))) |
19 | oveq1 7320 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥)) | |
20 | 19 | oveq2d 7329 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥))) |
21 | 20 | eqeq2d 2748 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
22 | 21 | rexbidv 3172 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
23 | 18, 22 | bitrid 282 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
24 | 23 | cbvriotavw 7280 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) |
25 | eqeq1 2741 | . . . . . . . . 9 ⊢ (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥)))) | |
26 | 25 | rexbidv 3172 | . . . . . . . 8 ⊢ (𝑣 = 𝑢 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
27 | 26 | riotabidv 7272 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
28 | 24, 27 | eqtrid 2789 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
29 | 28 | cbvmptv 5198 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
30 | sneq 4579 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
31 | 30 | fveq2d 6813 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑦})) |
32 | oveq2 7321 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦)) | |
33 | 32 | oveq2d 7329 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦))) |
34 | 33 | eqeq2d 2748 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
35 | 31, 34 | rexeqbidv 3317 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
36 | 35 | riotabidv 7272 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
37 | 36 | mpteq2dv 5187 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
38 | 29, 37 | eqtrid 2789 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
39 | 38 | cbvmptv 5198 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
40 | 15, 39 | eqtri 2765 | . 2 ⊢ 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
41 | lcflo.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41 | lcfrlem9 39776 | 1 ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 {crab 3404 ∖ cdif 3893 {csn 4569 ↦ cmpt 5168 –1-1-onto→wf1o 6462 ‘cfv 6463 ℩crio 7269 (class class class)co 7313 Basecbs 16979 +gcplusg 17029 Scalarcsca 17032 ·𝑠 cvsca 17033 0gc0g 17217 LFnlclfn 37283 LKerclk 37311 LDualcld 37349 HLchlt 37576 LHypclh 38210 DVecHcdvh 39304 ocHcoch 39573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-riotaBAD 37179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-undef 8134 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-0g 17219 df-proset 18080 df-poset 18098 df-plt 18115 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 df-p0 18210 df-p1 18211 df-lat 18217 df-clat 18284 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-subg 18819 df-cntz 18990 df-lsm 19308 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-ring 19852 df-oppr 19929 df-dvdsr 19950 df-unit 19951 df-invr 19981 df-dvr 19992 df-drng 20064 df-lmod 20196 df-lss 20265 df-lsp 20305 df-lvec 20436 df-lsatoms 37202 df-lshyp 37203 df-lfl 37284 df-lkr 37312 df-ldual 37350 df-oposet 37402 df-ol 37404 df-oml 37405 df-covers 37492 df-ats 37493 df-atl 37524 df-cvlat 37548 df-hlat 37577 df-llines 37724 df-lplanes 37725 df-lvols 37726 df-lines 37727 df-psubsp 37729 df-pmap 37730 df-padd 38022 df-lhyp 38214 df-laut 38215 df-ldil 38330 df-ltrn 38331 df-trl 38385 df-tgrp 38969 df-tendo 38981 df-edring 38983 df-dveca 39229 df-disoa 39255 df-dvech 39305 df-dib 39365 df-dic 39399 df-dih 39455 df-doch 39574 df-djh 39621 |
This theorem is referenced by: lcfrlem13 39781 hvmap1o 39989 |
Copyright terms: Public domain | W3C validator |