Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcf1o Structured version   Visualization version   GIF version

Theorem lcf1o 41508
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcf1o (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   ,𝑓,𝑘,𝑣   𝑓,𝐿   𝑅,𝑓,𝑘,𝑣   𝑓,𝐹   𝑓,𝑉   · ,𝑓,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑤,𝑣,𝑓,𝑘)

Proof of Theorem lcf1o
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.h . 2 𝐻 = (LHyp‘𝐾)
2 lcf1o.o . 2 = ((ocH‘𝐾)‘𝑊)
3 lcf1o.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcf1o.v . 2 𝑉 = (Base‘𝑈)
5 lcf1o.a . 2 + = (+g𝑈)
6 lcf1o.t . 2 · = ( ·𝑠𝑈)
7 lcf1o.s . 2 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . 2 𝑅 = (Base‘𝑆)
9 lcf1o.z . 2 0 = (0g𝑈)
10 lcf1o.f . 2 𝐹 = (LFnl‘𝑈)
11 lcf1o.l . 2 𝐿 = (LKer‘𝑈)
12 lcf1o.d . 2 𝐷 = (LDual‘𝑈)
13 lcf1o.q . 2 𝑄 = (0g𝐷)
14 lcf1o.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
15 lcf1o.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
16 oveq1 7455 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥)))
1716eqeq2d 2751 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥))))
1817cbvrexvw 3244 . . . . . . . . 9 (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)))
19 oveq1 7455 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2019oveq2d 7464 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
2120eqeq2d 2751 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥))))
2221rexbidv 3185 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2318, 22bitrid 283 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2423cbvriotavw 7414 . . . . . . 7 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))
25 eqeq1 2744 . . . . . . . . 9 (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
2625rexbidv 3185 . . . . . . . 8 (𝑣 = 𝑢 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2726riotabidv 7406 . . . . . . 7 (𝑣 = 𝑢 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2824, 27eqtrid 2792 . . . . . 6 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2928cbvmptv 5279 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
30 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130fveq2d 6924 . . . . . . . 8 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
32 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦))
3332oveq2d 7464 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦)))
3433eqeq2d 2751 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
3531, 34rexeqbidv 3355 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3635riotabidv 7406 . . . . . 6 (𝑥 = 𝑦 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3736mpteq2dv 5268 . . . . 5 (𝑥 = 𝑦 → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3829, 37eqtrid 2792 . . . 4 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3938cbvmptv 5279 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
4015, 39eqtri 2768 . 2 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
41 lcflo.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41lcfrlem9 41507 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cdif 3973  {csn 4648  cmpt 5249  1-1-ontowf1o 6572  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LFnlclfn 39013  LKerclk 39041  LDualcld 39079  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  ocHcoch 41304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305  df-djh 41352
This theorem is referenced by:  lcfrlem13  41512  hvmap1o  41720
  Copyright terms: Public domain W3C validator