| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcf1o | Structured version Visualization version GIF version | ||
| Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcf1o.a | ⊢ + = (+g‘𝑈) |
| lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcf1o.z | ⊢ 0 = (0g‘𝑈) |
| lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
| lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| lcf1o | ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcf1o.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcf1o.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcf1o.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lcf1o.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lcf1o.a | . 2 ⊢ + = (+g‘𝑈) | |
| 6 | lcf1o.t | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 7 | lcf1o.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 8 | lcf1o.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
| 9 | lcf1o.z | . 2 ⊢ 0 = (0g‘𝑈) | |
| 10 | lcf1o.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 11 | lcf1o.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
| 12 | lcf1o.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
| 13 | lcf1o.q | . 2 ⊢ 𝑄 = (0g‘𝐷) | |
| 14 | lcf1o.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 15 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 16 | oveq1 7360 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥))) | |
| 17 | 16 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥)))) |
| 18 | 17 | cbvrexvw 3208 | . . . . . . . . 9 ⊢ (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥))) |
| 19 | oveq1 7360 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥)) | |
| 20 | 19 | oveq2d 7369 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥))) |
| 21 | 20 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
| 22 | 21 | rexbidv 3153 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
| 23 | 18, 22 | bitrid 283 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
| 24 | 23 | cbvriotavw 7320 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) |
| 25 | eqeq1 2733 | . . . . . . . . 9 ⊢ (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥)))) | |
| 26 | 25 | rexbidv 3153 | . . . . . . . 8 ⊢ (𝑣 = 𝑢 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 27 | 26 | riotabidv 7312 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 28 | 24, 27 | eqtrid 2776 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 29 | 28 | cbvmptv 5199 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 30 | sneq 4589 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 31 | 30 | fveq2d 6830 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑦})) |
| 32 | oveq2 7361 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦)) | |
| 33 | 32 | oveq2d 7369 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦))) |
| 34 | 33 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
| 35 | 31, 34 | rexeqbidv 3311 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
| 36 | 35 | riotabidv 7312 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
| 37 | 36 | mpteq2dv 5189 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 38 | 29, 37 | eqtrid 2776 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 39 | 38 | cbvmptv 5199 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 40 | 15, 39 | eqtri 2752 | . 2 ⊢ 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 41 | lcflo.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41 | lcfrlem9 41532 | 1 ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 ∖ cdif 3902 {csn 4579 ↦ cmpt 5176 –1-1-onto→wf1o 6485 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 LFnlclfn 39038 LKerclk 39066 LDualcld 39104 HLchlt 39331 LHypclh 39966 DVecHcdvh 41060 ocHcoch 41329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17363 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38957 df-lshyp 38958 df-lfl 39039 df-lkr 39067 df-ldual 39105 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-llines 39480 df-lplanes 39481 df-lvols 39482 df-lines 39483 df-psubsp 39485 df-pmap 39486 df-padd 39778 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 df-trl 40141 df-tgrp 40725 df-tendo 40737 df-edring 40739 df-dveca 40985 df-disoa 41011 df-dvech 41061 df-dib 41121 df-dic 41155 df-dih 41211 df-doch 41330 df-djh 41377 |
| This theorem is referenced by: lcfrlem13 41537 hvmap1o 41745 |
| Copyright terms: Public domain | W3C validator |