Step | Hyp | Ref
| Expression |
1 | | lcf1o.h |
. 2
β’ π» = (LHypβπΎ) |
2 | | lcf1o.o |
. 2
β’ β₯ =
((ocHβπΎ)βπ) |
3 | | lcf1o.u |
. 2
β’ π = ((DVecHβπΎ)βπ) |
4 | | lcf1o.v |
. 2
β’ π = (Baseβπ) |
5 | | lcf1o.a |
. 2
β’ + =
(+gβπ) |
6 | | lcf1o.t |
. 2
β’ Β· = (
Β·π βπ) |
7 | | lcf1o.s |
. 2
β’ π = (Scalarβπ) |
8 | | lcf1o.r |
. 2
β’ π
= (Baseβπ) |
9 | | lcf1o.z |
. 2
β’ 0 =
(0gβπ) |
10 | | lcf1o.f |
. 2
β’ πΉ = (LFnlβπ) |
11 | | lcf1o.l |
. 2
β’ πΏ = (LKerβπ) |
12 | | lcf1o.d |
. 2
β’ π· = (LDualβπ) |
13 | | lcf1o.q |
. 2
β’ π = (0gβπ·) |
14 | | lcf1o.c |
. 2
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
15 | | lcf1o.j |
. . 3
β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
16 | | oveq1 7420 |
. . . . . . . . . . 11
β’ (π€ = π§ β (π€ + (π Β· π₯)) = (π§ + (π Β· π₯))) |
17 | 16 | eqeq2d 2741 |
. . . . . . . . . 10
β’ (π€ = π§ β (π£ = (π€ + (π Β· π₯)) β π£ = (π§ + (π Β· π₯)))) |
18 | 17 | cbvrexvw 3233 |
. . . . . . . . 9
β’
(βπ€ β (
β₯
β{π₯})π£ = (π€ + (π Β· π₯)) β βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯))) |
19 | | oveq1 7420 |
. . . . . . . . . . . 12
β’ (π = π β (π Β· π₯) = (π Β· π₯)) |
20 | 19 | oveq2d 7429 |
. . . . . . . . . . 11
β’ (π = π β (π§ + (π Β· π₯)) = (π§ + (π Β· π₯))) |
21 | 20 | eqeq2d 2741 |
. . . . . . . . . 10
β’ (π = π β (π£ = (π§ + (π Β· π₯)) β π£ = (π§ + (π Β· π₯)))) |
22 | 21 | rexbidv 3176 |
. . . . . . . . 9
β’ (π = π β (βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯)) β βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯)))) |
23 | 18, 22 | bitrid 282 |
. . . . . . . 8
β’ (π = π β (βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)) β βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯)))) |
24 | 23 | cbvriotavw 7379 |
. . . . . . 7
β’
(β©π
β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))) = (β©π β π
βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯))) |
25 | | eqeq1 2734 |
. . . . . . . . 9
β’ (π£ = π’ β (π£ = (π§ + (π Β· π₯)) β π’ = (π§ + (π Β· π₯)))) |
26 | 25 | rexbidv 3176 |
. . . . . . . 8
β’ (π£ = π’ β (βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯)) β βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
27 | 26 | riotabidv 7371 |
. . . . . . 7
β’ (π£ = π’ β (β©π β π
βπ§ β ( β₯ β{π₯})π£ = (π§ + (π Β· π₯))) = (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
28 | 24, 27 | eqtrid 2782 |
. . . . . 6
β’ (π£ = π’ β (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))) = (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
29 | 28 | cbvmptv 5262 |
. . . . 5
β’ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
30 | | sneq 4639 |
. . . . . . . . 9
β’ (π₯ = π¦ β {π₯} = {π¦}) |
31 | 30 | fveq2d 6896 |
. . . . . . . 8
β’ (π₯ = π¦ β ( β₯ β{π₯}) = ( β₯ β{π¦})) |
32 | | oveq2 7421 |
. . . . . . . . . 10
β’ (π₯ = π¦ β (π Β· π₯) = (π Β· π¦)) |
33 | 32 | oveq2d 7429 |
. . . . . . . . 9
β’ (π₯ = π¦ β (π§ + (π Β· π₯)) = (π§ + (π Β· π¦))) |
34 | 33 | eqeq2d 2741 |
. . . . . . . 8
β’ (π₯ = π¦ β (π’ = (π§ + (π Β· π₯)) β π’ = (π§ + (π Β· π¦)))) |
35 | 31, 34 | rexeqbidv 3341 |
. . . . . . 7
β’ (π₯ = π¦ β (βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)) β βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) |
36 | 35 | riotabidv 7371 |
. . . . . 6
β’ (π₯ = π¦ β (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯))) = (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) |
37 | 36 | mpteq2dv 5251 |
. . . . 5
β’ (π₯ = π¦ β (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))))) |
38 | 29, 37 | eqtrid 2782 |
. . . 4
β’ (π₯ = π¦ β (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))))) |
39 | 38 | cbvmptv 5262 |
. . 3
β’ (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) = (π¦ β (π β { 0 }) β¦ (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))))) |
40 | 15, 39 | eqtri 2758 |
. 2
β’ π½ = (π¦ β (π β { 0 }) β¦ (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))))) |
41 | | lcflo.k |
. 2
β’ (π β (πΎ β HL β§ π β π»)) |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 40, 41 | lcfrlem9 40726 |
1
β’ (π β π½:(π β { 0 })β1-1-ontoβ(πΆ β {π})) |