Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcf1o Structured version   Visualization version   GIF version

Theorem lcf1o 41518
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcf1o (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   ,𝑓,𝑘,𝑣   𝑓,𝐿   𝑅,𝑓,𝑘,𝑣   𝑓,𝐹   𝑓,𝑉   · ,𝑓,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑤,𝑣,𝑓,𝑘)

Proof of Theorem lcf1o
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.h . 2 𝐻 = (LHyp‘𝐾)
2 lcf1o.o . 2 = ((ocH‘𝐾)‘𝑊)
3 lcf1o.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcf1o.v . 2 𝑉 = (Base‘𝑈)
5 lcf1o.a . 2 + = (+g𝑈)
6 lcf1o.t . 2 · = ( ·𝑠𝑈)
7 lcf1o.s . 2 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . 2 𝑅 = (Base‘𝑆)
9 lcf1o.z . 2 0 = (0g𝑈)
10 lcf1o.f . 2 𝐹 = (LFnl‘𝑈)
11 lcf1o.l . 2 𝐿 = (LKer‘𝑈)
12 lcf1o.d . 2 𝐷 = (LDual‘𝑈)
13 lcf1o.q . 2 𝑄 = (0g𝐷)
14 lcf1o.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
15 lcf1o.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
16 oveq1 7376 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥)))
1716eqeq2d 2740 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥))))
1817cbvrexvw 3214 . . . . . . . . 9 (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)))
19 oveq1 7376 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2019oveq2d 7385 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
2120eqeq2d 2740 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥))))
2221rexbidv 3157 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2318, 22bitrid 283 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2423cbvriotavw 7336 . . . . . . 7 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))
25 eqeq1 2733 . . . . . . . . 9 (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
2625rexbidv 3157 . . . . . . . 8 (𝑣 = 𝑢 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2726riotabidv 7328 . . . . . . 7 (𝑣 = 𝑢 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2824, 27eqtrid 2776 . . . . . 6 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2928cbvmptv 5206 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
30 sneq 4595 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130fveq2d 6844 . . . . . . . 8 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
32 oveq2 7377 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦))
3332oveq2d 7385 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦)))
3433eqeq2d 2740 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
3531, 34rexeqbidv 3317 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3635riotabidv 7328 . . . . . 6 (𝑥 = 𝑦 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3736mpteq2dv 5196 . . . . 5 (𝑥 = 𝑦 → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3829, 37eqtrid 2776 . . . 4 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3938cbvmptv 5206 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
4015, 39eqtri 2752 . 2 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
41 lcflo.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41lcfrlem9 41517 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  cdif 3908  {csn 4585  cmpt 5183  1-1-ontowf1o 6498  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  LFnlclfn 39023  LKerclk 39051  LDualcld 39089  HLchlt 39316  LHypclh 39951  DVecHcdvh 41045  ocHcoch 41314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lshyp 38943  df-lfl 39024  df-lkr 39052  df-ldual 39090  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-tendo 40722  df-edring 40724  df-dveca 40970  df-disoa 40996  df-dvech 41046  df-dib 41106  df-dic 41140  df-dih 41196  df-doch 41315  df-djh 41362
This theorem is referenced by:  lcfrlem13  41522  hvmap1o  41730
  Copyright terms: Public domain W3C validator