| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcf1o | Structured version Visualization version GIF version | ||
| Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcf1o.a | ⊢ + = (+g‘𝑈) |
| lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcf1o.z | ⊢ 0 = (0g‘𝑈) |
| lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
| lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| lcf1o | ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcf1o.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcf1o.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcf1o.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lcf1o.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lcf1o.a | . 2 ⊢ + = (+g‘𝑈) | |
| 6 | lcf1o.t | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 7 | lcf1o.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 8 | lcf1o.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
| 9 | lcf1o.z | . 2 ⊢ 0 = (0g‘𝑈) | |
| 10 | lcf1o.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 11 | lcf1o.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
| 12 | lcf1o.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
| 13 | lcf1o.q | . 2 ⊢ 𝑄 = (0g‘𝐷) | |
| 14 | lcf1o.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 15 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 16 | oveq1 7376 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥))) | |
| 17 | 16 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥)))) |
| 18 | 17 | cbvrexvw 3214 | . . . . . . . . 9 ⊢ (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥))) |
| 19 | oveq1 7376 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥)) | |
| 20 | 19 | oveq2d 7385 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥))) |
| 21 | 20 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
| 22 | 21 | rexbidv 3157 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
| 23 | 18, 22 | bitrid 283 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
| 24 | 23 | cbvriotavw 7336 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) |
| 25 | eqeq1 2733 | . . . . . . . . 9 ⊢ (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥)))) | |
| 26 | 25 | rexbidv 3157 | . . . . . . . 8 ⊢ (𝑣 = 𝑢 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 27 | 26 | riotabidv 7328 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 28 | 24, 27 | eqtrid 2776 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 29 | 28 | cbvmptv 5206 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
| 30 | sneq 4595 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 31 | 30 | fveq2d 6844 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑦})) |
| 32 | oveq2 7377 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦)) | |
| 33 | 32 | oveq2d 7385 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦))) |
| 34 | 33 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
| 35 | 31, 34 | rexeqbidv 3317 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
| 36 | 35 | riotabidv 7328 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
| 37 | 36 | mpteq2dv 5196 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 38 | 29, 37 | eqtrid 2776 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 39 | 38 | cbvmptv 5206 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 40 | 15, 39 | eqtri 2752 | . 2 ⊢ 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
| 41 | lcflo.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41 | lcfrlem9 41517 | 1 ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ∖ cdif 3908 {csn 4585 ↦ cmpt 5183 –1-1-onto→wf1o 6498 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 LFnlclfn 39023 LKerclk 39051 LDualcld 39089 HLchlt 39316 LHypclh 39951 DVecHcdvh 41045 ocHcoch 41314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lfl 39024 df-lkr 39052 df-ldual 39090 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 |
| This theorem is referenced by: lcfrlem13 41522 hvmap1o 41730 |
| Copyright terms: Public domain | W3C validator |