Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcf1o Structured version   Visualization version   GIF version

Theorem lcf1o 41198
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcf1o (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   ,𝑓,𝑘,𝑣   𝑓,𝐿   𝑅,𝑓,𝑘,𝑣   𝑓,𝐹   𝑓,𝑉   · ,𝑓,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑤,𝑣,𝑓,𝑘)

Proof of Theorem lcf1o
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.h . 2 𝐻 = (LHyp‘𝐾)
2 lcf1o.o . 2 = ((ocH‘𝐾)‘𝑊)
3 lcf1o.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcf1o.v . 2 𝑉 = (Base‘𝑈)
5 lcf1o.a . 2 + = (+g𝑈)
6 lcf1o.t . 2 · = ( ·𝑠𝑈)
7 lcf1o.s . 2 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . 2 𝑅 = (Base‘𝑆)
9 lcf1o.z . 2 0 = (0g𝑈)
10 lcf1o.f . 2 𝐹 = (LFnl‘𝑈)
11 lcf1o.l . 2 𝐿 = (LKer‘𝑈)
12 lcf1o.d . 2 𝐷 = (LDual‘𝑈)
13 lcf1o.q . 2 𝑄 = (0g𝐷)
14 lcf1o.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
15 lcf1o.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
16 oveq1 7430 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥)))
1716eqeq2d 2736 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥))))
1817cbvrexvw 3225 . . . . . . . . 9 (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)))
19 oveq1 7430 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2019oveq2d 7439 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
2120eqeq2d 2736 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥))))
2221rexbidv 3168 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2318, 22bitrid 282 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2423cbvriotavw 7389 . . . . . . 7 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))
25 eqeq1 2729 . . . . . . . . 9 (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
2625rexbidv 3168 . . . . . . . 8 (𝑣 = 𝑢 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2726riotabidv 7381 . . . . . . 7 (𝑣 = 𝑢 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2824, 27eqtrid 2777 . . . . . 6 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2928cbvmptv 5265 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
30 sneq 4642 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130fveq2d 6904 . . . . . . . 8 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
32 oveq2 7431 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦))
3332oveq2d 7439 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦)))
3433eqeq2d 2736 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
3531, 34rexeqbidv 3330 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3635riotabidv 7381 . . . . . 6 (𝑥 = 𝑦 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3736mpteq2dv 5254 . . . . 5 (𝑥 = 𝑦 → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3829, 37eqtrid 2777 . . . 4 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3938cbvmptv 5265 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
4015, 39eqtri 2753 . 2 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
41 lcflo.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41lcfrlem9 41197 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3059  {crab 3418  cdif 3943  {csn 4632  cmpt 5235  1-1-ontowf1o 6552  cfv 6553  crio 7378  (class class class)co 7423  Basecbs 17208  +gcplusg 17261  Scalarcsca 17264   ·𝑠 cvsca 17265  0gc0g 17449  LFnlclfn 38703  LKerclk 38731  LDualcld 38769  HLchlt 38996  LHypclh 39631  DVecHcdvh 40725  ocHcoch 40994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-riotaBAD 38599
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-tpos 8240  df-undef 8287  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-n0 12520  df-z 12606  df-uz 12870  df-fz 13534  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-0g 17451  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-subg 19112  df-cntz 19306  df-lsm 19629  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-invr 20365  df-dvr 20378  df-drng 20666  df-lmod 20785  df-lss 20856  df-lsp 20896  df-lvec 21028  df-lsatoms 38622  df-lshyp 38623  df-lfl 38704  df-lkr 38732  df-ldual 38770  df-oposet 38822  df-ol 38824  df-oml 38825  df-covers 38912  df-ats 38913  df-atl 38944  df-cvlat 38968  df-hlat 38997  df-llines 39145  df-lplanes 39146  df-lvols 39147  df-lines 39148  df-psubsp 39150  df-pmap 39151  df-padd 39443  df-lhyp 39635  df-laut 39636  df-ldil 39751  df-ltrn 39752  df-trl 39806  df-tgrp 40390  df-tendo 40402  df-edring 40404  df-dveca 40650  df-disoa 40676  df-dvech 40726  df-dib 40786  df-dic 40820  df-dih 40876  df-doch 40995  df-djh 41042
This theorem is referenced by:  lcfrlem13  41202  hvmap1o  41410
  Copyright terms: Public domain W3C validator