![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcf1o | Structured version Visualization version GIF version |
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
Ref | Expression |
---|---|
lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
lcf1o.a | ⊢ + = (+g‘𝑈) |
lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
lcf1o.z | ⊢ 0 = (0g‘𝑈) |
lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcf1o | ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcf1o.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcf1o.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcf1o.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcf1o.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcf1o.a | . 2 ⊢ + = (+g‘𝑈) | |
6 | lcf1o.t | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | lcf1o.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcf1o.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
9 | lcf1o.z | . 2 ⊢ 0 = (0g‘𝑈) | |
10 | lcf1o.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
11 | lcf1o.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcf1o.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | lcf1o.q | . 2 ⊢ 𝑄 = (0g‘𝐷) | |
14 | lcf1o.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
15 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
16 | oveq1 6981 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥))) | |
17 | 16 | eqeq2d 2781 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥)))) |
18 | 17 | cbvrexv 3377 | . . . . . . . . 9 ⊢ (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥))) |
19 | oveq1 6981 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥)) | |
20 | 19 | oveq2d 6990 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥))) |
21 | 20 | eqeq2d 2781 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
22 | 21 | rexbidv 3235 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
23 | 18, 22 | syl5bb 275 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
24 | 23 | cbvriotav 6946 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) |
25 | eqeq1 2775 | . . . . . . . . 9 ⊢ (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥)))) | |
26 | 25 | rexbidv 3235 | . . . . . . . 8 ⊢ (𝑣 = 𝑢 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
27 | 26 | riotabidv 6937 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
28 | 24, 27 | syl5eq 2819 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
29 | 28 | cbvmptv 5024 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
30 | sneq 4445 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
31 | 30 | fveq2d 6500 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑦})) |
32 | oveq2 6982 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦)) | |
33 | 32 | oveq2d 6990 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦))) |
34 | 33 | eqeq2d 2781 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
35 | 31, 34 | rexeqbidv 3335 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
36 | 35 | riotabidv 6937 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
37 | 36 | mpteq2dv 5019 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
38 | 29, 37 | syl5eq 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
39 | 38 | cbvmptv 5024 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
40 | 15, 39 | eqtri 2795 | . 2 ⊢ 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
41 | lcflo.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41 | lcfrlem9 38168 | 1 ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∃wrex 3082 {crab 3085 ∖ cdif 3819 {csn 4435 ↦ cmpt 5004 –1-1-onto→wf1o 6184 ‘cfv 6185 ℩crio 6934 (class class class)co 6974 Basecbs 16337 +gcplusg 16419 Scalarcsca 16422 ·𝑠 cvsca 16423 0gc0g 16567 LFnlclfn 35675 LKerclk 35703 LDualcld 35741 HLchlt 35968 LHypclh 36602 DVecHcdvh 37696 ocHcoch 37965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-riotaBAD 35571 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7499 df-2nd 7500 df-tpos 7693 df-undef 7740 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 df-0g 16569 df-proset 17408 df-poset 17426 df-plt 17438 df-lub 17454 df-glb 17455 df-join 17456 df-meet 17457 df-p0 17519 df-p1 17520 df-lat 17526 df-clat 17588 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-subg 18072 df-cntz 18230 df-lsm 18534 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-drng 19239 df-lmod 19370 df-lss 19438 df-lsp 19478 df-lvec 19609 df-lsatoms 35594 df-lshyp 35595 df-lfl 35676 df-lkr 35704 df-ldual 35742 df-oposet 35794 df-ol 35796 df-oml 35797 df-covers 35884 df-ats 35885 df-atl 35916 df-cvlat 35940 df-hlat 35969 df-llines 36116 df-lplanes 36117 df-lvols 36118 df-lines 36119 df-psubsp 36121 df-pmap 36122 df-padd 36414 df-lhyp 36606 df-laut 36607 df-ldil 36722 df-ltrn 36723 df-trl 36777 df-tgrp 37361 df-tendo 37373 df-edring 37375 df-dveca 37621 df-disoa 37647 df-dvech 37697 df-dib 37757 df-dic 37791 df-dih 37847 df-doch 37966 df-djh 38013 |
This theorem is referenced by: lcfrlem13 38173 hvmap1o 38381 |
Copyright terms: Public domain | W3C validator |