Home | Metamath
Proof Explorer Theorem List (p. 411 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rgspncl 41001 | The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑅)) | ||
Theorem | rgspnssid 41002 | The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | ||
Theorem | rgspnmin 41003 | The ring-span is contained in all subspaces which contain all the generators. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 ⊆ 𝑆) | ||
Theorem | rgspnid 41004 | The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘𝑅)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑆 = 𝐴) | ||
Theorem | rngunsnply 41005* | Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝐵 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → (𝑉 ∈ 𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝‘𝑋))) | ||
Theorem | flcidc 41006* | Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝜑 → 𝐹 = (𝑗 ∈ 𝑆 ↦ if(𝑗 = 𝐾, 1, 0))) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑆) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑆 ((𝐹‘𝑖) · 𝐵) = ⦋𝐾 / 𝑖⦌𝐵) | ||
Syntax | cmend 41007 | Syntax for module endomorphism algebra. |
class MEndo | ||
Definition | df-mend 41008* | Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f (+g‘𝑚)𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑚)〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠 ‘𝑚)𝑦))〉})) | ||
Theorem | algstr 41009 | Lemma to shorten proofs of algbase 41010 through algvsca 41014. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝐴 Struct 〈1, 6〉 | ||
Theorem | algbase 41010 | The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
Theorem | algaddg 41011 | The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
Theorem | algmulr 41012 | The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
Theorem | algsca 41013 | The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
Theorem | algvsca 41014 | The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
Theorem | mendval 41015* | Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐵 = (𝑀 LMHom 𝑀) & ⊢ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f (+g‘𝑀)𝑦)) & ⊢ × = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ · = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝑀 ∈ 𝑋 → (MEndo‘𝑀) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉})) | ||
Theorem | mendbas 41016 | Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) | ||
Theorem | mendplusgfval 41017* | Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (+g‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f + 𝑦)) | ||
Theorem | mendplusg 41018 | A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) & ⊢ ✚ = (+g‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
Theorem | mendmulrfval 41019* | Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (.r‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) | ||
Theorem | mendmulr 41020 | A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∘ 𝑌)) | ||
Theorem | mendsca 41021 | The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ 𝑆 = (Scalar‘𝐴) | ||
Theorem | mendvscafval 41022* | Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) ⇒ ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) | ||
Theorem | mendvsca 41023 | A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) | ||
Theorem | mendring 41024 | The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) | ||
Theorem | mendlmod 41025 | The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod) | ||
Theorem | mendassa 41026 | The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
Theorem | idomrootle 41027* | No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑦 ∈ 𝐵 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≤ 𝑁) | ||
Theorem | idomodle 41028* | Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ 𝑁) | ||
Theorem | fiuneneq 41029 | Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 ↔ 𝐴 = 𝐵)) | ||
Theorem | idomsubgmo 41030* | The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁) | ||
Theorem | proot1mul 41031 | Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (◡𝑂 “ {𝑁}) ∧ 𝑌 ∈ (◡𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌})) | ||
Theorem | proot1hash 41032 | If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (ϕ‘𝑁)) | ||
Theorem | proot1ex 41033 | The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁})) | ||
Syntax | ccytp 41034 | Syntax for the sequence of cyclotomic polynomials. |
class CytP | ||
Definition | df-cytp 41035* | The Nth cyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | ||
Theorem | isdomn3 41036 | Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈))) | ||
Theorem | mon1pid 41037 | Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ (𝐷‘ 1 ) = 0)) | ||
Theorem | mon1psubm 41038 | Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑃) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) | ||
Theorem | deg1mhm 41039 | Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) & ⊢ 𝑁 = (ℂfld ↾s ℕ0) ⇒ ⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) | ||
Theorem | cytpfn 41040 | Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ CytP Fn ℕ | ||
Theorem | cytpval 41041* | Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝑇) & ⊢ 𝑃 = (Poly1‘ℂfld) & ⊢ 𝑋 = (var1‘ℂfld) & ⊢ 𝑄 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟))))) | ||
Theorem | fgraphopab 41042* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | ||
Theorem | fgraphxp 41043* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) | ||
Theorem | hausgraph 41044 | The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾))) | ||
Syntax | ctopsep 41045 | The class of separable topologies. |
class TopSep | ||
Syntax | ctoplnd 41046 | The class of Lindelöf topologies. |
class TopLnd | ||
Definition | df-topsep 41047* | A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
⊢ TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 ∪ 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = ∪ 𝑗)} | ||
Definition | df-toplnd 41048* | A topology is Lindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
⊢ TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧))} | ||
Theorem | iocunico 41049 | Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) | ||
Theorem | iocinico 41050 | The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵}) | ||
Theorem | iocmbl 41051 | An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) | ||
Theorem | cnioobibld 41052* | A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 25014 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | arearect 41053 | The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈ ℝ & ⊢ 𝐴 ≤ 𝐵 & ⊢ 𝐶 ≤ 𝐷 & ⊢ 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⇒ ⊢ (area‘𝑆) = ((𝐵 − 𝐴) · (𝐷 − 𝐶)) | ||
Theorem | areaquad 41054* | The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ × ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈ ℝ & ⊢ 𝐸 ∈ ℝ & ⊢ 𝐹 ∈ ℝ & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 ≤ 𝐸 & ⊢ 𝐷 ≤ 𝐹 & ⊢ 𝑈 = (𝐶 + (((𝑥 − 𝐴) / (𝐵 − 𝐴)) · (𝐷 − 𝐶))) & ⊢ 𝑉 = (𝐸 + (((𝑥 − 𝐴) / (𝐵 − 𝐴)) · (𝐹 − 𝐸))) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))} ⇒ ⊢ (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵 − 𝐴)) | ||
Theorem | nlimsuc 41055 | A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) | ||
Theorem | nlim1NEW 41056 | 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
⊢ ¬ Lim 1o | ||
Theorem | nlim2NEW 41057 | 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
⊢ ¬ Lim 2o | ||
Theorem | nlim3 41058 | 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
⊢ ¬ Lim 3o | ||
Theorem | nlim4 41059 | 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
⊢ ¬ Lim 4o | ||
Theorem | oa1un 41060 | Given 𝐴 ∈ On, let 𝐴 +o 1o be defined to be the union of 𝐴 and {𝐴}. Compare with oa1suc 8370. (Contributed by RP, 27-Sep-2023.) |
⊢ (𝐴 ∈ On → (𝐴 +o 1o) = (𝐴 ∪ {𝐴})) | ||
Theorem | oa1cl 41061 | 𝐴 +o 1o is in On. (Contributed by RP, 27-Sep-2023.) |
⊢ (𝐴 ∈ On → (𝐴 +o 1o) ∈ On) | ||
Theorem | 0finon 41062 | 0 is a finite ordinal. See peano1 7744. (Contributed by RP, 27-Sep-2023.) |
⊢ ∅ ∈ (On ∩ Fin) | ||
Theorem | 1finon 41063 | 1 is a finite ordinal. See 1onn 8479. (Contributed by RP, 27-Sep-2023.) |
⊢ 1o ∈ (On ∩ Fin) | ||
Theorem | 2finon 41064 | 2 is a finite ordinal. See 1onn 8479. (Contributed by RP, 27-Sep-2023.) |
⊢ 2o ∈ (On ∩ Fin) | ||
Theorem | 3finon 41065 | 3 is a finite ordinal. See 1onn 8479. (Contributed by RP, 27-Sep-2023.) |
⊢ 3o ∈ (On ∩ Fin) | ||
Theorem | 4finon 41066 | 4 is a finite ordinal. See 1onn 8479. (Contributed by RP, 27-Sep-2023.) |
⊢ 4o ∈ (On ∩ Fin) | ||
Theorem | finona1cl 41067 | The finite ordinals are closed under the add one operation. (Contributed by RP, 27-Sep-2023.) |
⊢ (𝑁 ∈ (On ∩ Fin) → (𝑁 +o 1o) ∈ (On ∩ Fin)) | ||
Theorem | finonex 41068 | The finite ordinals are a set. See also onprc 7637 and fiprc 8844 for proof that On and Fin are proper classes. (Contributed by RP, 27-Sep-2023.) |
⊢ (On ∩ Fin) ∈ V | ||
Theorem | fzunt 41069 | Union of two adjacent finite sets of sequential integers that share a common endpoint. (Suggested by NM, 21-Jul-2005.) (Contributed by RP, 14-Dec-2024.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
Theorem | fzuntd 41070 | Union of two adjacent finite sets of sequential integers that share a common endpoint. (Contributed by RP, 14-Dec-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
Theorem | fzunt1d 41071 | Union of two overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) & ⊢ (𝜑 → 𝑀 ≤ 𝐿) & ⊢ (𝜑 → 𝐿 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
Theorem | fzuntgd 41072 | Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) & ⊢ (𝜑 → 𝑀 ≤ (𝐿 + 1)) & ⊢ (𝜑 → 𝐿 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
Theorem | ifpan123g 41073 | Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
⊢ ((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ∧ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂)))) | ||
Theorem | ifpan23 41074 | Conjunction of conditional logical operators. (Contributed by RP, 20-Apr-2020.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) ∧ if-(𝜑, 𝜃, 𝜏)) ↔ if-(𝜑, (𝜓 ∧ 𝜃), (𝜒 ∧ 𝜏))) | ||
Theorem | ifpdfor2 41075 | Define or in terms of conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 ∨ 𝜓) ↔ if-(𝜑, 𝜑, 𝜓)) | ||
Theorem | ifporcor 41076 | Corollary of commutation of or. (Contributed by RP, 20-Apr-2020.) |
⊢ (if-(𝜑, 𝜑, 𝜓) ↔ if-(𝜓, 𝜓, 𝜑)) | ||
Theorem | ifpdfan2 41077 | Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, 𝜑)) | ||
Theorem | ifpancor 41078 | Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.) |
⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) | ||
Theorem | ifpdfor 41079 | Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 ∨ 𝜓) ↔ if-(𝜑, ⊤, 𝜓)) | ||
Theorem | ifpdfan 41080 | Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, ⊥)) | ||
Theorem | ifpbi2 41081 | Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃))) | ||
Theorem | ifpbi3 41082 | Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜒, 𝜃, 𝜑) ↔ if-(𝜒, 𝜃, 𝜓))) | ||
Theorem | ifpim1 41083 | Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 → 𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓)) | ||
Theorem | ifpnot 41084 | Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ (¬ 𝜑 ↔ if-(𝜑, ⊥, ⊤)) | ||
Theorem | ifpid2 41085 | Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ (𝜑 ↔ if-(𝜑, ⊤, ⊥)) | ||
Theorem | ifpim2 41086 | Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 → 𝜓) ↔ if-(𝜓, ⊤, ¬ 𝜑)) | ||
Theorem | ifpbi23 41087 | Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃))) | ||
Theorem | ifpbiidcor 41088 | Restatement of biid 260. (Contributed by RP, 25-Apr-2020.) |
⊢ if-(𝜑, 𝜑, ¬ 𝜑) | ||
Theorem | ifpbicor 41089 | Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.) |
⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | ifpxorcor 41090 | Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.) |
⊢ (if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜓, ¬ 𝜑, 𝜑)) | ||
Theorem | ifpbi1 41091 | Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃))) | ||
Theorem | ifpnot23 41092 | Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020.) |
⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) | ||
Theorem | ifpnotnotb 41093 | Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | ifpnorcor 41094 | Corollary of commutation of nor. (Contributed by RP, 25-Apr-2020.) |
⊢ (if-(𝜑, ¬ 𝜑, ¬ 𝜓) ↔ if-(𝜓, ¬ 𝜓, ¬ 𝜑)) | ||
Theorem | ifpnancor 41095 | Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.) |
⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) | ||
Theorem | ifpnot23b 41096 | Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.) |
⊢ (¬ if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, 𝜓, ¬ 𝜒)) | ||
Theorem | ifpbiidcor2 41097 | Restatement of biid 260. (Contributed by RP, 25-Apr-2020.) |
⊢ ¬ if-(𝜑, ¬ 𝜑, 𝜑) | ||
Theorem | ifpnot23c 41098 | Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.) |
⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒)) | ||
Theorem | ifpnot23d 41099 | Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.) |
⊢ (¬ if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | ifpdfnan 41100 | Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |