![]() |
Metamath
Proof Explorer Theorem List (p. 411 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | diatrl 41001 | Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝐹 ∈ (𝐼‘𝑋)) → (𝑅‘𝐹) ≤ 𝑋) | ||
Theorem | diaelrnN 41002 | Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) | ||
Theorem | dialss 41003 | The value of partial isomorphism A is a subspace of partial vector space A. Part of Lemma M of [Crawley] p. 120 line 26. (Contributed by NM, 17-Jan-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) | ||
Theorem | diaord 41004 | The partial isomorphism A for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 26-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) | ||
Theorem | dia11N 41005 | The partial isomorphism A for a lattice 𝐾 is one-to-one in the region under co-atom 𝑊. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | diaf11N 41006 | The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | ||
Theorem | diaclN 41007 | Closure of partial isomorphism A for a lattice 𝐾. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) | ||
Theorem | diacnvclN 41008 | Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ dom 𝐼) | ||
Theorem | dia0 41009 | The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) | ||
Theorem | dia1N 41010 | The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) | ||
Theorem | dia1elN 41011 | The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) | ||
Theorem | diaglbN 41012* | Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
Theorem | diameetN 41013 | Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
Theorem | diainN 41014 | Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) | ||
Theorem | diaintclN 41015 | The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑆 ∈ ran 𝐼) | ||
Theorem | diasslssN 41016 | The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) | ||
Theorem | diassdvaN 41017 | The partial isomorphism A maps to a set of vectors in partial vector space A. (Contributed by NM, 1-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑉) | ||
Theorem | dia1dim 41018* | Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) | ||
Theorem | dia1dim2 41019 | Two expressions for a 1-dimensional subspace of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 15-Jan-2014.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{𝐹})) | ||
Theorem | dia1dimid 41020 | A vector (translation) belongs to the 1-dim subspace it generates. (Contributed by NM, 8-Sep-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝐼‘(𝑅‘𝐹))) | ||
Theorem | dia2dimlem1 41021 | Lemma for dia2dim 41034. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | ||
Theorem | dia2dimlem2 41022 | Lemma for dia2dim 41034. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) ⇒ ⊢ (𝜑 → (𝑅‘𝐺) = 𝑈) | ||
Theorem | dia2dimlem3 41023 | Lemma for dia2dim 41034. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → (𝑅‘𝐷) = 𝑉) | ||
Theorem | dia2dimlem4 41024 | Lemma for dia2dim 41034. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) | ||
Theorem | dia2dimlem5 41025 | Lemma for dia2dim 41034. The sum of vectors 𝐺 and 𝐷 belongs to the sum of the subspaces generated by them. Thus, 𝐹 = (𝐺 ∘ 𝐷) belongs to the subspace sum. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem6 41026 | Lemma for dia2dim 41034. Eliminate auxiliary translations 𝐺 and 𝐷. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem7 41027 | Lemma for dia2dim 41034. Eliminate (𝐹‘𝑃) ≠ 𝑃 condition. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem8 41028 | Lemma for dia2dim 41034. Eliminate no-longer used auxiliary atoms 𝑃 and 𝑄. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem9 41029 | Lemma for dia2dim 41034. Eliminate (𝑅‘𝐹) ≠ 𝑈, 𝑉 conditions. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem10 41030 | Lemma for dia2dim 41034. Convert membership in closed subspace (𝐼‘(𝑈 ∨ 𝑉)) to a lattice ordering. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉))) ⇒ ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) | ||
Theorem | dia2dimlem11 41031 | Lemma for dia2dim 41034. Convert ordering hypothesis on 𝑅‘𝐹 to subspace membership 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉)). (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem12 41032 | Lemma for dia2dim 41034. Obtain subset relation. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem13 41033 | Lemma for dia2dim 41034. Eliminate 𝑈 ≠ 𝑉 condition. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dim 41034 | A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Syntax | cdvh 41035 | Extend class notation with constructed full vector space H. |
class DVecH | ||
Definition | df-dvech 41036* | Define constructed full vector space H. (Contributed by NM, 17-Oct-2013.) |
⊢ DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) | ||
Theorem | dvhfset 41037* | The constructed full vector space H for a lattice 𝐾. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DVecH‘𝐾) = (𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) | ||
Theorem | dvhset 41038* | The constructed full vector space H for a lattice 𝐾. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) | ||
Theorem | dvhsca 41039 | The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) | ||
Theorem | dvhbase 41040 | The ring base set of the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐶 = (Base‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐶 = 𝐸) | ||
Theorem | dvhfplusr 41041* | Ring addition operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ ✚ = (+g‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ✚ = + ) | ||
Theorem | dvhfmulr 41042* | Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) | ||
Theorem | dvhmulr 41043 | Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ · = (.r‘𝐹) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) | ||
Theorem | dvhvbase 41044 | The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom 𝑊). (Contributed by NM, 2-Nov-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑉 = (𝑇 × 𝐸)) | ||
Theorem | dvhelvbasei 41045 | Vector membership in the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸)) → 〈𝐹, 𝑆〉 ∈ 𝑉) | ||
Theorem | dvhvaddcbv 41046* | Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.) |
⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) ⇒ ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) | ||
Theorem | dvhvaddval 41047* | The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) |
⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) ⇒ ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) | ||
Theorem | dvhfvadd 41048* | The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ ✚ = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) & ⊢ + = (+g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + = ✚ ) | ||
Theorem | dvhvadd 41049 | The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ ⨣ = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) | ||
Theorem | dvhopvadd 41050 | The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ ⨣ = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) | ||
Theorem | dvhopvadd2 41051* | The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd 41050 and/or dvhfplusr 41041. (Contributed by NM, 26-Sep-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) | ||
Theorem | dvhvaddcl 41052 | Closure of the vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸)) | ||
Theorem | dvhvaddcomN 41053 | Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) | ||
Theorem | dvhvaddass 41054 | Associativity of vector sum. (Contributed by NM, 31-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼))) | ||
Theorem | dvhvscacbv 41055* | Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) | ||
Theorem | dvhvscaval 41056* | The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) | ||
Theorem | dvhfvsca 41057* | Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)) | ||
Theorem | dvhvsca 41058 | Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝑅 · 𝐹) = 〈(𝑅‘(1st ‘𝐹)), (𝑅 ∘ (2nd ‘𝐹))〉) | ||
Theorem | dvhopvsca 41059 | Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) | ||
Theorem | dvhvscacl 41060 | Closure of the scalar product operation for the constructed full vector space H. (Contributed by NM, 12-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝑅 · 𝐹) ∈ (𝑇 × 𝐸)) | ||
Theorem | tendoinvcl 41061* | Closure of multiplicative inverse for endomorphism. We use the scalar inverse of the vector space since it is much simpler than the direct inverse of cdleml8 40940. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) | ||
Theorem | tendolinv 41062* | Left multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∘ 𝑆) = ( I ↾ 𝑇)) | ||
Theorem | tendorinv 41063* | Right multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆 ∘ (𝑁‘𝑆)) = ( I ↾ 𝑇)) | ||
Theorem | dvhgrp 41064 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐼 = (invg‘𝐷) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ Grp) | ||
Theorem | dvhlveclem 41065 | Lemma for dvhlvec 41066. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 → method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐼 = (invg‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) | ||
Theorem | dvhlvec 41066 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a left module. (Contributed by NM, 23-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LVec) | ||
Theorem | dvhlmod 41067 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a left module. (Contributed by NM, 23-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LMod) | ||
Theorem | dvh0g 41068* | The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) | ||
Theorem | dvheveccl 41069 | Properties of a unit vector that we will use later as a convenient reference vector. This vector is called "e" in the remark after Lemma M of [Crawley] p. 121. line 17. See also dvhopN 41073 and dihpN 41293. (Contributed by NM, 27-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐸 = 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉 & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) | ||
Theorem | dvhopclN 41070 | Closure of a DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | ||
Theorem | dvhopaddN 41071* | Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) ⇒ ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) | ||
Theorem | dvhopspN 41072* | Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) | ||
Theorem | dvhopN 41073* | Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) & ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) & ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) & ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) | ||
Theorem | dvhopellsm 41074* | Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (〈𝐹, 𝑇〉 ∈ (𝑋 ⊕ 𝑌) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ 𝑋 ∧ 〈𝑧, 𝑤〉 ∈ 𝑌) ∧ 〈𝐹, 𝑇〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) | ||
Theorem | cdlemm10N 41075* | The image of the map 𝐺 is the entire one-dimensional subspace (𝐼‘𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐶 = {𝑟 ∈ 𝐴 ∣ (𝑟 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑟 ≤ 𝑊)} & ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠) & ⊢ 𝐺 = (𝑞 ∈ 𝐶 ↦ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑞)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ran 𝐺 = (𝐼‘𝑉)) | ||
Syntax | cocaN 41076 | Extend class notation with subspace orthocomplement for DVecA partial vector space. |
class ocA | ||
Definition | df-docaN 41077* | Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.) |
⊢ ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) | ||
Theorem | docaffvalN 41078* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (ocA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) | ||
Theorem | docafvalN 41079* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) | ||
Theorem | docavalN 41080* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) | ||
Theorem | docaclN 41081 | Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ( ⊥ ‘𝑋) ∈ ran 𝐼) | ||
Theorem | diaocN 41082 | Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) | ||
Theorem | doca2N 41083 | Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘( ⊥ ‘(𝐼‘𝑋))) = (𝐼‘𝑋)) | ||
Theorem | doca3N 41084 | Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
Theorem | dvadiaN 41085 | Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ∈ ran 𝐼) | ||
Theorem | diarnN 41086* | Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) | ||
Theorem | diaf1oN 41087* | The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 40992 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) | ||
Syntax | cdjaN 41088 | Extend class notation with subspace join for DVecA partial vector space. |
class vA | ||
Definition | df-djaN 41089* | Define (closed) subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) |
⊢ vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) | ||
Theorem | djaffvalN 41090* | Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (vA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))) | ||
Theorem | djafvalN 41091* | Subspace join for DVecA partial vector space. TODO: take out hypothesis .i, no longer used. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘(( ⊥ ‘𝑥) ∩ ( ⊥ ‘𝑦))))) | ||
Theorem | djavalN 41092 | Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)))) | ||
Theorem | djaclN 41093 | Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼) | ||
Theorem | djajN 41094 | Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) | ||
Syntax | cdib 41095 | Extend class notation with isomorphism B. |
class DIsoB | ||
Definition | df-dib 41096* | Isomorphism B is isomorphism A extended with an extra dimension set to the zero vector component i.e. the zero endormorphism. Its domain is lattice elements less than or equal to the fiducial co-atom 𝑤. (Contributed by NM, 8-Dec-2013.) |
⊢ DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) | ||
Theorem | dibffval 41097* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DIsoB‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) | ||
Theorem | dibfval 41098* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) | ||
Theorem | dibval 41099* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) | ||
Theorem | dibopelvalN 41100* | Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |