Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapffval Structured version   Visualization version   GIF version

Theorem hvmapffval 41168
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypothesis
Ref Expression
hvmapval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
hvmapffval (𝐾 ∈ 𝑋 β†’ (HVMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯)))))))
Distinct variable groups:   𝑀,𝐻   𝑑,𝑗,𝑣,π‘₯,𝑀,𝐾
Allowed substitution hints:   𝐻(π‘₯,𝑣,𝑑,𝑗)   𝑋(π‘₯,𝑀,𝑣,𝑑,𝑗)

Proof of Theorem hvmapffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3488 . 2 (𝐾 ∈ 𝑋 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 hvmapval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2785 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (DVecHβ€˜π‘˜) = (DVecHβ€˜πΎ))
65fveq1d 6893 . . . . . . 7 (π‘˜ = 𝐾 β†’ ((DVecHβ€˜π‘˜)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘€))
76fveq2d 6895 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
86fveq2d 6895 . . . . . . 7 (π‘˜ = 𝐾 β†’ (0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
98sneqd 4636 . . . . . 6 (π‘˜ = 𝐾 β†’ {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))} = {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))})
107, 9difeq12d 4119 . . . . 5 (π‘˜ = 𝐾 β†’ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) = ((Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))}))
116fveq2d 6895 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
1211fveq2d 6895 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))) = (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€))))
13 fveq2 6891 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (ocHβ€˜π‘˜) = (ocHβ€˜πΎ))
1413fveq1d 6893 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ ((ocHβ€˜π‘˜)β€˜π‘€) = ((ocHβ€˜πΎ)β€˜π‘€))
1514fveq1d 6893 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯}) = (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯}))
166fveq2d 6895 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
17 eqidd 2728 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ 𝑑 = 𝑑)
186fveq2d 6895 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ ( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = ( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€)))
1918oveqd 7431 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯) = (𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯))
2016, 17, 19oveq123d 7435 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)) = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯)))
2120eqeq2d 2738 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)) ↔ 𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯))))
2215, 21rexeqbidv 3338 . . . . . . 7 (π‘˜ = 𝐾 β†’ (βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)) ↔ βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯))))
2312, 22riotaeqbidv 7373 . . . . . 6 (π‘˜ = 𝐾 β†’ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))) = (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯))))
247, 23mpteq12dv 5233 . . . . 5 (π‘˜ = 𝐾 β†’ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))) = (𝑣 ∈ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯)))))
2510, 24mpteq12dv 5233 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯))))) = (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯))))))
264, 25mpteq12dv 5233 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯)))))))
27 df-hvmap 41167 . . 3 HVMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))))
2826, 27, 3mptfvmpt 7234 . 2 (𝐾 ∈ V β†’ (HVMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯)))))))
291, 28syl 17 1 (𝐾 ∈ 𝑋 β†’ (HVMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜πΎ)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜πΎ)β€˜π‘€))π‘₯)))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099  βˆƒwrex 3065  Vcvv 3469   βˆ– cdif 3941  {csn 4624   ↦ cmpt 5225  β€˜cfv 6542  β„©crio 7369  (class class class)co 7414  Basecbs 17171  +gcplusg 17224  Scalarcsca 17227   ·𝑠 cvsca 17228  0gc0g 17412  LHypclh 39394  DVecHcdvh 40488  ocHcoch 40757  HVMapchvm 41166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-hvmap 41167
This theorem is referenced by:  hvmapfval  41169
  Copyright terms: Public domain W3C validator