Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapffval Structured version   Visualization version   GIF version

Theorem hvmapffval 39699
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypothesis
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
hvmapffval (𝐾𝑋 → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
Distinct variable groups:   𝑤,𝐻   𝑡,𝑗,𝑣,𝑥,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑣,𝑡,𝑗)   𝑋(𝑥,𝑤,𝑣,𝑡,𝑗)

Proof of Theorem hvmapffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝑋𝐾 ∈ V)
2 fveq2 6756 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 hvmapval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2797 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6756 . . . . . . . 8 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
65fveq1d 6758 . . . . . . 7 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
76fveq2d 6760 . . . . . 6 (𝑘 = 𝐾 → (Base‘((DVecH‘𝑘)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑤)))
86fveq2d 6760 . . . . . . 7 (𝑘 = 𝐾 → (0g‘((DVecH‘𝑘)‘𝑤)) = (0g‘((DVecH‘𝐾)‘𝑤)))
98sneqd 4570 . . . . . 6 (𝑘 = 𝐾 → {(0g‘((DVecH‘𝑘)‘𝑤))} = {(0g‘((DVecH‘𝐾)‘𝑤))})
107, 9difeq12d 4054 . . . . 5 (𝑘 = 𝐾 → ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) = ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}))
116fveq2d 6760 . . . . . . . 8 (𝑘 = 𝐾 → (Scalar‘((DVecH‘𝑘)‘𝑤)) = (Scalar‘((DVecH‘𝐾)‘𝑤)))
1211fveq2d 6760 . . . . . . 7 (𝑘 = 𝐾 → (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤))))
13 fveq2 6756 . . . . . . . . . 10 (𝑘 = 𝐾 → (ocH‘𝑘) = (ocH‘𝐾))
1413fveq1d 6758 . . . . . . . . 9 (𝑘 = 𝐾 → ((ocH‘𝑘)‘𝑤) = ((ocH‘𝐾)‘𝑤))
1514fveq1d 6758 . . . . . . . 8 (𝑘 = 𝐾 → (((ocH‘𝑘)‘𝑤)‘{𝑥}) = (((ocH‘𝐾)‘𝑤)‘{𝑥}))
166fveq2d 6760 . . . . . . . . . 10 (𝑘 = 𝐾 → (+g‘((DVecH‘𝑘)‘𝑤)) = (+g‘((DVecH‘𝐾)‘𝑤)))
17 eqidd 2739 . . . . . . . . . 10 (𝑘 = 𝐾𝑡 = 𝑡)
186fveq2d 6760 . . . . . . . . . . 11 (𝑘 = 𝐾 → ( ·𝑠 ‘((DVecH‘𝑘)‘𝑤)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑤)))
1918oveqd 7272 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥) = (𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))
2016, 17, 19oveq123d 7276 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)) = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))
2120eqeq2d 2749 . . . . . . . 8 (𝑘 = 𝐾 → (𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)) ↔ 𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))
2215, 21rexeqbidv 3328 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)) ↔ ∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))
2312, 22riotaeqbidv 7215 . . . . . 6 (𝑘 = 𝐾 → (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥))) = (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))
247, 23mpteq12dv 5161 . . . . 5 (𝑘 = 𝐾 → (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))) = (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))
2510, 24mpteq12dv 5161 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥))))) = (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))
264, 25mpteq12dv 5161 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))))) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
27 df-hvmap 39698 . . 3 HVMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))))))
2826, 27, 3mptfvmpt 7086 . 2 (𝐾 ∈ V → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
291, 28syl 17 1 (𝐾𝑋 → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cdif 3880  {csn 4558  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LHypclh 37925  DVecHcdvh 39019  ocHcoch 39288  HVMapchvm 39697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-hvmap 39698
This theorem is referenced by:  hvmapfval  39700
  Copyright terms: Public domain W3C validator