Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapffval Structured version   Visualization version   GIF version

Theorem hvmapffval 41737
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypothesis
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
hvmapffval (𝐾𝑋 → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
Distinct variable groups:   𝑤,𝐻   𝑡,𝑗,𝑣,𝑥,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑣,𝑡,𝑗)   𝑋(𝑥,𝑤,𝑣,𝑡,𝑗)

Proof of Theorem hvmapffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐾𝑋𝐾 ∈ V)
2 fveq2 6826 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 hvmapval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2782 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
65fveq1d 6828 . . . . . . 7 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
76fveq2d 6830 . . . . . 6 (𝑘 = 𝐾 → (Base‘((DVecH‘𝑘)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑤)))
86fveq2d 6830 . . . . . . 7 (𝑘 = 𝐾 → (0g‘((DVecH‘𝑘)‘𝑤)) = (0g‘((DVecH‘𝐾)‘𝑤)))
98sneqd 4591 . . . . . 6 (𝑘 = 𝐾 → {(0g‘((DVecH‘𝑘)‘𝑤))} = {(0g‘((DVecH‘𝐾)‘𝑤))})
107, 9difeq12d 4080 . . . . 5 (𝑘 = 𝐾 → ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) = ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}))
116fveq2d 6830 . . . . . . . 8 (𝑘 = 𝐾 → (Scalar‘((DVecH‘𝑘)‘𝑤)) = (Scalar‘((DVecH‘𝐾)‘𝑤)))
1211fveq2d 6830 . . . . . . 7 (𝑘 = 𝐾 → (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤))))
13 fveq2 6826 . . . . . . . . . 10 (𝑘 = 𝐾 → (ocH‘𝑘) = (ocH‘𝐾))
1413fveq1d 6828 . . . . . . . . 9 (𝑘 = 𝐾 → ((ocH‘𝑘)‘𝑤) = ((ocH‘𝐾)‘𝑤))
1514fveq1d 6828 . . . . . . . 8 (𝑘 = 𝐾 → (((ocH‘𝑘)‘𝑤)‘{𝑥}) = (((ocH‘𝐾)‘𝑤)‘{𝑥}))
166fveq2d 6830 . . . . . . . . . 10 (𝑘 = 𝐾 → (+g‘((DVecH‘𝑘)‘𝑤)) = (+g‘((DVecH‘𝐾)‘𝑤)))
17 eqidd 2730 . . . . . . . . . 10 (𝑘 = 𝐾𝑡 = 𝑡)
186fveq2d 6830 . . . . . . . . . . 11 (𝑘 = 𝐾 → ( ·𝑠 ‘((DVecH‘𝑘)‘𝑤)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑤)))
1918oveqd 7370 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥) = (𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))
2016, 17, 19oveq123d 7374 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)) = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))
2120eqeq2d 2740 . . . . . . . 8 (𝑘 = 𝐾 → (𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)) ↔ 𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))
2215, 21rexeqbidv 3311 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)) ↔ ∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))
2312, 22riotaeqbidv 7313 . . . . . 6 (𝑘 = 𝐾 → (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥))) = (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))
247, 23mpteq12dv 5182 . . . . 5 (𝑘 = 𝐾 → (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))) = (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))
2510, 24mpteq12dv 5182 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥))))) = (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))
264, 25mpteq12dv 5182 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))))) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
27 df-hvmap 41736 . . 3 HVMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))))))
2826, 27, 3mptfvmpt 7168 . 2 (𝐾 ∈ V → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
291, 28syl 17 1 (𝐾𝑋 → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  cdif 3902  {csn 4579  cmpt 5176  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326  HVMapchvm 41735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-hvmap 41736
This theorem is referenced by:  hvmapfval  41738
  Copyright terms: Public domain W3C validator