Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (πΎ β π β πΎ β V) |
2 | | fveq2 6891 |
. . . . 5
β’ (π = πΎ β (LHypβπ) = (LHypβπΎ)) |
3 | | hvmapval.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | 2, 3 | eqtr4di 2790 |
. . . 4
β’ (π = πΎ β (LHypβπ) = π») |
5 | | fveq2 6891 |
. . . . . . . 8
β’ (π = πΎ β (DVecHβπ) = (DVecHβπΎ)) |
6 | 5 | fveq1d 6893 |
. . . . . . 7
β’ (π = πΎ β ((DVecHβπ)βπ€) = ((DVecHβπΎ)βπ€)) |
7 | 6 | fveq2d 6895 |
. . . . . 6
β’ (π = πΎ β (Baseβ((DVecHβπ)βπ€)) = (Baseβ((DVecHβπΎ)βπ€))) |
8 | 6 | fveq2d 6895 |
. . . . . . 7
β’ (π = πΎ β
(0gβ((DVecHβπ)βπ€)) = (0gβ((DVecHβπΎ)βπ€))) |
9 | 8 | sneqd 4640 |
. . . . . 6
β’ (π = πΎ β
{(0gβ((DVecHβπ)βπ€))} =
{(0gβ((DVecHβπΎ)βπ€))}) |
10 | 7, 9 | difeq12d 4123 |
. . . . 5
β’ (π = πΎ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) = ((Baseβ((DVecHβπΎ)βπ€)) β
{(0gβ((DVecHβπΎ)βπ€))})) |
11 | 6 | fveq2d 6895 |
. . . . . . . 8
β’ (π = πΎ β (Scalarβ((DVecHβπ)βπ€)) = (Scalarβ((DVecHβπΎ)βπ€))) |
12 | 11 | fveq2d 6895 |
. . . . . . 7
β’ (π = πΎ β
(Baseβ(Scalarβ((DVecHβπ)βπ€))) =
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))) |
13 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = πΎ β (ocHβπ) = (ocHβπΎ)) |
14 | 13 | fveq1d 6893 |
. . . . . . . . 9
β’ (π = πΎ β ((ocHβπ)βπ€) = ((ocHβπΎ)βπ€)) |
15 | 14 | fveq1d 6893 |
. . . . . . . 8
β’ (π = πΎ β (((ocHβπ)βπ€)β{π₯}) = (((ocHβπΎ)βπ€)β{π₯})) |
16 | 6 | fveq2d 6895 |
. . . . . . . . . 10
β’ (π = πΎ β
(+gβ((DVecHβπ)βπ€)) = (+gβ((DVecHβπΎ)βπ€))) |
17 | | eqidd 2733 |
. . . . . . . . . 10
β’ (π = πΎ β π‘ = π‘) |
18 | 6 | fveq2d 6895 |
. . . . . . . . . . 11
β’ (π = πΎ β (
Β·π β((DVecHβπ)βπ€)) = ( Β·π
β((DVecHβπΎ)βπ€))) |
19 | 18 | oveqd 7425 |
. . . . . . . . . 10
β’ (π = πΎ β (π( Β·π
β((DVecHβπ)βπ€))π₯) = (π( Β·π
β((DVecHβπΎ)βπ€))π₯)) |
20 | 16, 17, 19 | oveq123d 7429 |
. . . . . . . . 9
β’ (π = πΎ β (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)) = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯))) |
21 | 20 | eqeq2d 2743 |
. . . . . . . 8
β’ (π = πΎ β (π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)) β π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯)))) |
22 | 15, 21 | rexeqbidv 3343 |
. . . . . . 7
β’ (π = πΎ β (βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)) β βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯)))) |
23 | 12, 22 | riotaeqbidv 7367 |
. . . . . 6
β’ (π = πΎ β (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))) = (β©π β
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯)))) |
24 | 7, 23 | mpteq12dv 5239 |
. . . . 5
β’ (π = πΎ β (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)))) = (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯))))) |
25 | 10, 24 | mpteq12dv 5239 |
. . . 4
β’ (π = πΎ β (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))))) = (π₯ β ((Baseβ((DVecHβπΎ)βπ€)) β
{(0gβ((DVecHβπΎ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯)))))) |
26 | 4, 25 | mpteq12dv 5239 |
. . 3
β’ (π = πΎ β (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯)))))) = (π€ β π» β¦ (π₯ β ((Baseβ((DVecHβπΎ)βπ€)) β
{(0gβ((DVecHβπΎ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯))))))) |
27 | | df-hvmap 40623 |
. . 3
β’ HVMap =
(π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))))))) |
28 | 26, 27, 3 | mptfvmpt 7229 |
. 2
β’ (πΎ β V β
(HVMapβπΎ) = (π€ β π» β¦ (π₯ β ((Baseβ((DVecHβπΎ)βπ€)) β
{(0gβ((DVecHβπΎ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯))))))) |
29 | 1, 28 | syl 17 |
1
β’ (πΎ β π β (HVMapβπΎ) = (π€ β π» β¦ (π₯ β ((Baseβ((DVecHβπΎ)βπ€)) β
{(0gβ((DVecHβπΎ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π
β((DVecHβπΎ)βπ€))π₯))))))) |