Detailed syntax breakdown of Definition df-ig1p
Step | Hyp | Ref
| Expression |
1 | | cig1p 25275 |
. 2
class
idlGen1p |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3430 |
. . 3
class
V |
4 | | vi |
. . . 4
setvar 𝑖 |
5 | 2 | cv 1540 |
. . . . . 6
class 𝑟 |
6 | | cpl1 21329 |
. . . . . 6
class
Poly1 |
7 | 5, 6 | cfv 6430 |
. . . . 5
class
(Poly1‘𝑟) |
8 | | clidl 20413 |
. . . . 5
class
LIdeal |
9 | 7, 8 | cfv 6430 |
. . . 4
class
(LIdeal‘(Poly1‘𝑟)) |
10 | 4 | cv 1540 |
. . . . . 6
class 𝑖 |
11 | | c0g 17131 |
. . . . . . . 8
class
0g |
12 | 7, 11 | cfv 6430 |
. . . . . . 7
class
(0g‘(Poly1‘𝑟)) |
13 | 12 | csn 4566 |
. . . . . 6
class
{(0g‘(Poly1‘𝑟))} |
14 | 10, 13 | wceq 1541 |
. . . . 5
wff 𝑖 =
{(0g‘(Poly1‘𝑟))} |
15 | | vg |
. . . . . . . . 9
setvar 𝑔 |
16 | 15 | cv 1540 |
. . . . . . . 8
class 𝑔 |
17 | | cdg1 25197 |
. . . . . . . . 9
class
deg1 |
18 | 5, 17 | cfv 6430 |
. . . . . . . 8
class (
deg1 ‘𝑟) |
19 | 16, 18 | cfv 6430 |
. . . . . . 7
class ((
deg1 ‘𝑟)‘𝑔) |
20 | 10, 13 | cdif 3888 |
. . . . . . . . 9
class (𝑖 ∖
{(0g‘(Poly1‘𝑟))}) |
21 | 18, 20 | cima 5591 |
. . . . . . . 8
class ((
deg1 ‘𝑟)
“ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})) |
22 | | cr 10854 |
. . . . . . . 8
class
ℝ |
23 | | clt 10993 |
. . . . . . . 8
class
< |
24 | 21, 22, 23 | cinf 9161 |
. . . . . . 7
class inf(((
deg1 ‘𝑟)
“ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) |
25 | 19, 24 | wceq 1541 |
. . . . . 6
wff ((
deg1 ‘𝑟)‘𝑔) = inf((( deg1 ‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) |
26 | | cmn1 25271 |
. . . . . . . 8
class
Monic1p |
27 | 5, 26 | cfv 6430 |
. . . . . . 7
class
(Monic1p‘𝑟) |
28 | 10, 27 | cin 3890 |
. . . . . 6
class (𝑖 ∩
(Monic1p‘𝑟)) |
29 | 25, 15, 28 | crio 7224 |
. . . . 5
class
(℩𝑔
∈ (𝑖 ∩
(Monic1p‘𝑟))(( deg1 ‘𝑟)‘𝑔) = inf((( deg1 ‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )) |
30 | 14, 12, 29 | cif 4464 |
. . . 4
class if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))(( deg1
‘𝑟)‘𝑔) = inf((( deg1
‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))) |
31 | 4, 9, 30 | cmpt 5161 |
. . 3
class (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))(( deg1
‘𝑟)‘𝑔) = inf((( deg1
‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )))) |
32 | 2, 3, 31 | cmpt 5161 |
. 2
class (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))(( deg1
‘𝑟)‘𝑔) = inf((( deg1
‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |
33 | 1, 32 | wceq 1541 |
1
wff
idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))(( deg1
‘𝑟)‘𝑔) = inf((( deg1
‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |