Detailed syntax breakdown of Definition df-ig1p
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cig1p 26169 | . 2
class
idlGen1p | 
| 2 |  | vr | . . 3
setvar 𝑟 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vi | . . . 4
setvar 𝑖 | 
| 5 | 2 | cv 1539 | . . . . . 6
class 𝑟 | 
| 6 |  | cpl1 22178 | . . . . . 6
class
Poly1 | 
| 7 | 5, 6 | cfv 6561 | . . . . 5
class
(Poly1‘𝑟) | 
| 8 |  | clidl 21216 | . . . . 5
class
LIdeal | 
| 9 | 7, 8 | cfv 6561 | . . . 4
class
(LIdeal‘(Poly1‘𝑟)) | 
| 10 | 4 | cv 1539 | . . . . . 6
class 𝑖 | 
| 11 |  | c0g 17484 | . . . . . . . 8
class
0g | 
| 12 | 7, 11 | cfv 6561 | . . . . . . 7
class
(0g‘(Poly1‘𝑟)) | 
| 13 | 12 | csn 4626 | . . . . . 6
class
{(0g‘(Poly1‘𝑟))} | 
| 14 | 10, 13 | wceq 1540 | . . . . 5
wff 𝑖 =
{(0g‘(Poly1‘𝑟))} | 
| 15 |  | vg | . . . . . . . . 9
setvar 𝑔 | 
| 16 | 15 | cv 1539 | . . . . . . . 8
class 𝑔 | 
| 17 |  | cdg1 26093 | . . . . . . . . 9
class
deg1 | 
| 18 | 5, 17 | cfv 6561 | . . . . . . . 8
class
(deg1‘𝑟) | 
| 19 | 16, 18 | cfv 6561 | . . . . . . 7
class
((deg1‘𝑟)‘𝑔) | 
| 20 | 10, 13 | cdif 3948 | . . . . . . . . 9
class (𝑖 ∖
{(0g‘(Poly1‘𝑟))}) | 
| 21 | 18, 20 | cima 5688 | . . . . . . . 8
class
((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})) | 
| 22 |  | cr 11154 | . . . . . . . 8
class
ℝ | 
| 23 |  | clt 11295 | . . . . . . . 8
class 
< | 
| 24 | 21, 22, 23 | cinf 9481 | . . . . . . 7
class
inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) | 
| 25 | 19, 24 | wceq 1540 | . . . . . 6
wff
((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) | 
| 26 |  | cmn1 26165 | . . . . . . . 8
class
Monic1p | 
| 27 | 5, 26 | cfv 6561 | . . . . . . 7
class
(Monic1p‘𝑟) | 
| 28 | 10, 27 | cin 3950 | . . . . . 6
class (𝑖 ∩
(Monic1p‘𝑟)) | 
| 29 | 25, 15, 28 | crio 7387 | . . . . 5
class
(℩𝑔
∈ (𝑖 ∩
(Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )) | 
| 30 | 14, 12, 29 | cif 4525 | . . . 4
class if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))) | 
| 31 | 4, 9, 30 | cmpt 5225 | . . 3
class (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )))) | 
| 32 | 2, 3, 31 | cmpt 5225 | . 2
class (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) | 
| 33 | 1, 32 | wceq 1540 | 1
wff
idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |