Detailed syntax breakdown of Definition df-ig1p
| Step | Hyp | Ref
| Expression |
| 1 | | cig1p 26169 |
. 2
class
idlGen1p |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vi |
. . . 4
setvar 𝑖 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑟 |
| 6 | | cpl1 22178 |
. . . . . 6
class
Poly1 |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Poly1‘𝑟) |
| 8 | | clidl 21216 |
. . . . 5
class
LIdeal |
| 9 | 7, 8 | cfv 6561 |
. . . 4
class
(LIdeal‘(Poly1‘𝑟)) |
| 10 | 4 | cv 1539 |
. . . . . 6
class 𝑖 |
| 11 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 12 | 7, 11 | cfv 6561 |
. . . . . . 7
class
(0g‘(Poly1‘𝑟)) |
| 13 | 12 | csn 4626 |
. . . . . 6
class
{(0g‘(Poly1‘𝑟))} |
| 14 | 10, 13 | wceq 1540 |
. . . . 5
wff 𝑖 =
{(0g‘(Poly1‘𝑟))} |
| 15 | | vg |
. . . . . . . . 9
setvar 𝑔 |
| 16 | 15 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 17 | | cdg1 26093 |
. . . . . . . . 9
class
deg1 |
| 18 | 5, 17 | cfv 6561 |
. . . . . . . 8
class
(deg1‘𝑟) |
| 19 | 16, 18 | cfv 6561 |
. . . . . . 7
class
((deg1‘𝑟)‘𝑔) |
| 20 | 10, 13 | cdif 3948 |
. . . . . . . . 9
class (𝑖 ∖
{(0g‘(Poly1‘𝑟))}) |
| 21 | 18, 20 | cima 5688 |
. . . . . . . 8
class
((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})) |
| 22 | | cr 11154 |
. . . . . . . 8
class
ℝ |
| 23 | | clt 11295 |
. . . . . . . 8
class
< |
| 24 | 21, 22, 23 | cinf 9481 |
. . . . . . 7
class
inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) |
| 25 | 19, 24 | wceq 1540 |
. . . . . 6
wff
((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) |
| 26 | | cmn1 26165 |
. . . . . . . 8
class
Monic1p |
| 27 | 5, 26 | cfv 6561 |
. . . . . . 7
class
(Monic1p‘𝑟) |
| 28 | 10, 27 | cin 3950 |
. . . . . 6
class (𝑖 ∩
(Monic1p‘𝑟)) |
| 29 | 25, 15, 28 | crio 7387 |
. . . . 5
class
(℩𝑔
∈ (𝑖 ∩
(Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )) |
| 30 | 14, 12, 29 | cif 4525 |
. . . 4
class if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))) |
| 31 | 4, 9, 30 | cmpt 5225 |
. . 3
class (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )))) |
| 32 | 2, 3, 31 | cmpt 5225 |
. 2
class (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |
| 33 | 1, 32 | wceq 1540 |
1
wff
idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |