MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divmo Structured version   Visualization version   GIF version

Theorem ply1divmo 25991
Description: Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divmo.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
ply1divmo.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
ply1divmo (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   ,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(𝑞)   𝐸(𝑞)   0 (𝑞)

Proof of Theorem ply1divmo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg.r1 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
21adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑅 ∈ Ring)
3 ply1divalg.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
43ply1ring 22090 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Ring)
6 ringgrp 20139 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
75, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
8 ply1divalg.f . . . . . . . . . . . 12 (𝜑𝐹𝐵)
98adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐹𝐵)
10 ply1divalg.g1 . . . . . . . . . . . . 13 (𝜑𝐺𝐵)
1110adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐺𝐵)
12 simprl 768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
13 ply1divalg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
14 ply1divalg.t . . . . . . . . . . . . 13 = (.r𝑃)
1513, 14ringcl 20151 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
165, 11, 12, 15syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑞) ∈ 𝐵)
17 ply1divalg.m . . . . . . . . . . . 12 = (-g𝑃)
1813, 17grpsubcl 18946 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑞) ∈ 𝐵) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
197, 9, 16, 18syl3anc 1370 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
20 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
2113, 14ringcl 20151 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑟𝐵) → (𝐺 𝑟) ∈ 𝐵)
225, 11, 20, 21syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑟) ∈ 𝐵)
2313, 17grpsubcl 18946 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑟) ∈ 𝐵) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
247, 9, 22, 23syl3anc 1370 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
2513, 17grpsubcl 18946 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ (𝐹 (𝐺 𝑞)) ∈ 𝐵 ∧ (𝐹 (𝐺 𝑟)) ∈ 𝐵) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
267, 19, 24, 25syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
27 ply1divalg.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
2827, 3, 13deg1xrcl 25938 . . . . . . . . 9 (((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵 → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
2926, 28syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
3027, 3, 13deg1xrcl 25938 . . . . . . . . . 10 ((𝐹 (𝐺 𝑟)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3124, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3227, 3, 13deg1xrcl 25938 . . . . . . . . . 10 ((𝐹 (𝐺 𝑞)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3319, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3431, 33ifcld 4574 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ*)
3527, 3, 13deg1xrcl 25938 . . . . . . . . 9 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3611, 35syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷𝐺) ∈ ℝ*)
3729, 34, 363jca 1127 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
3837adantr 480 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
393, 27, 2, 13, 17, 19, 24deg1suble 25963 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
4039adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
41 xrmaxlt 13167 . . . . . . . . 9 (((𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ* ∧ (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4233, 31, 36, 41syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4342biimpar 477 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺))
4440, 43jca 511 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)))
45 xrlelttr 13142 . . . . . 6 (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
4638, 44, 45sylc 65 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
4746ex 412 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
48 ply1divalg.g2 . . . . . . . . . . . . 13 (𝜑𝐺0 )
49 ply1divalg.z . . . . . . . . . . . . . 14 0 = (0g𝑃)
5027, 3, 49, 13deg1nn0cl 25944 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
511, 10, 48, 50syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐺) ∈ ℕ0)
5251ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℕ0)
5352nn0red 12540 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℝ)
541ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝑅 ∈ Ring)
5513, 17grpsubcl 18946 . . . . . . . . . . . . 13 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → (𝑟 𝑞) ∈ 𝐵)
567, 20, 12, 55syl3anc 1370 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟 𝑞) ∈ 𝐵)
5756adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ∈ 𝐵)
5813, 49, 17grpsubeq0 18952 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
597, 20, 12, 58syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
60 equcom 2020 . . . . . . . . . . . . . 14 (𝑟 = 𝑞𝑞 = 𝑟)
6159, 60bitrdi 287 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑞 = 𝑟))
6261necon3bid 2984 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) ≠ 0𝑞𝑟))
6362biimpar 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ≠ 0 )
6427, 3, 49, 13deg1nn0cl 25944 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑟 𝑞) ∈ 𝐵 ∧ (𝑟 𝑞) ≠ 0 ) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
6554, 57, 63, 64syl3anc 1370 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
66 nn0addge1 12525 . . . . . . . . . 10 (((𝐷𝐺) ∈ ℝ ∧ (𝐷‘(𝑟 𝑞)) ∈ ℕ0) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
6753, 65, 66syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
68 ply1divmo.e . . . . . . . . . 10 𝐸 = (RLReg‘𝑅)
6910ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺𝐵)
7048ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺0 )
71 ply1divmo.g3 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7271ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7327, 3, 68, 13, 14, 49, 54, 69, 70, 72, 57, 63deg1mul2 25970 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝐺 (𝑟 𝑞))) = ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
7467, 73breqtrrd 5176 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘(𝐺 (𝑟 𝑞))))
75 ringabl 20176 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
765, 75syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Abel)
7713, 17, 76, 9, 16, 22ablnnncan1 19739 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = ((𝐺 𝑟) (𝐺 𝑞)))
7813, 14, 17, 5, 11, 20, 12ringsubdi 20202 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 (𝑟 𝑞)) = ((𝐺 𝑟) (𝐺 𝑞)))
7977, 78eqtr4d 2774 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = (𝐺 (𝑟 𝑞)))
8079fveq2d 6895 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8180adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8274, 81breqtrrd 5176 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))))
8336, 29xrlenltd 11287 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8483adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8582, 84mpbid 231 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
8685ex 412 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝑟 → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8786necon4ad 2958 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺) → 𝑞 = 𝑟))
8847, 87syld 47 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
8988ralrimivva 3199 . 2 (𝜑 → ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
90 oveq2 7420 . . . . . 6 (𝑞 = 𝑟 → (𝐺 𝑞) = (𝐺 𝑟))
9190oveq2d 7428 . . . . 5 (𝑞 = 𝑟 → (𝐹 (𝐺 𝑞)) = (𝐹 (𝐺 𝑟)))
9291fveq2d 6895 . . . 4 (𝑞 = 𝑟 → (𝐷‘(𝐹 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑟))))
9392breq1d 5158 . . 3 (𝑞 = 𝑟 → ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)))
9493rmo4 3726 . 2 (∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
9589, 94sylibr 233 1 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  ∃*wrmo 3374  ifcif 4528   class class class wbr 5148  cfv 6543  (class class class)co 7412  cr 11115   + caddc 11119  *cxr 11254   < clt 11255  cle 11256  0cn0 12479  Basecbs 17151  .rcmulr 17205  0gc0g 17392  Grpcgrp 18861  -gcsg 18863  Abelcabl 19697  Ringcrg 20134  RLRegcrlreg 21184  Poly1cpl1 22020  coe1cco1 22021   deg1 cdg1 25907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-ghm 19135  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-cring 20137  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-subrng 20442  df-subrg 20467  df-lmod 20704  df-lss 20775  df-rlreg 21188  df-cnfld 21234  df-psr 21772  df-mpl 21774  df-opsr 21776  df-psr1 22023  df-ply1 22025  df-coe1 22026  df-mdeg 25908  df-deg1 25909
This theorem is referenced by:  ply1divalg  25993
  Copyright terms: Public domain W3C validator