MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divmo Structured version   Visualization version   GIF version

Theorem ply1divmo 25500
Description: Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divmo.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
ply1divmo.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
ply1divmo (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   ,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(𝑞)   𝐸(𝑞)   0 (𝑞)

Proof of Theorem ply1divmo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg.r1 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
21adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑅 ∈ Ring)
3 ply1divalg.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
43ply1ring 21619 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Ring)
6 ringgrp 19969 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
75, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
8 ply1divalg.f . . . . . . . . . . . 12 (𝜑𝐹𝐵)
98adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐹𝐵)
10 ply1divalg.g1 . . . . . . . . . . . . 13 (𝜑𝐺𝐵)
1110adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐺𝐵)
12 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
13 ply1divalg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
14 ply1divalg.t . . . . . . . . . . . . 13 = (.r𝑃)
1513, 14ringcl 19981 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
165, 11, 12, 15syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑞) ∈ 𝐵)
17 ply1divalg.m . . . . . . . . . . . 12 = (-g𝑃)
1813, 17grpsubcl 18827 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑞) ∈ 𝐵) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
197, 9, 16, 18syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
20 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
2113, 14ringcl 19981 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑟𝐵) → (𝐺 𝑟) ∈ 𝐵)
225, 11, 20, 21syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑟) ∈ 𝐵)
2313, 17grpsubcl 18827 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑟) ∈ 𝐵) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
247, 9, 22, 23syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
2513, 17grpsubcl 18827 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ (𝐹 (𝐺 𝑞)) ∈ 𝐵 ∧ (𝐹 (𝐺 𝑟)) ∈ 𝐵) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
267, 19, 24, 25syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
27 ply1divalg.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
2827, 3, 13deg1xrcl 25447 . . . . . . . . 9 (((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵 → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
2926, 28syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
3027, 3, 13deg1xrcl 25447 . . . . . . . . . 10 ((𝐹 (𝐺 𝑟)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3124, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3227, 3, 13deg1xrcl 25447 . . . . . . . . . 10 ((𝐹 (𝐺 𝑞)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3319, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3431, 33ifcld 4532 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ*)
3527, 3, 13deg1xrcl 25447 . . . . . . . . 9 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3611, 35syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷𝐺) ∈ ℝ*)
3729, 34, 363jca 1128 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
3837adantr 481 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
393, 27, 2, 13, 17, 19, 24deg1suble 25472 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
4039adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
41 xrmaxlt 13100 . . . . . . . . 9 (((𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ* ∧ (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4233, 31, 36, 41syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4342biimpar 478 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺))
4440, 43jca 512 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)))
45 xrlelttr 13075 . . . . . 6 (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
4638, 44, 45sylc 65 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
4746ex 413 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
48 ply1divalg.g2 . . . . . . . . . . . . 13 (𝜑𝐺0 )
49 ply1divalg.z . . . . . . . . . . . . . 14 0 = (0g𝑃)
5027, 3, 49, 13deg1nn0cl 25453 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
511, 10, 48, 50syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐺) ∈ ℕ0)
5251ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℕ0)
5352nn0red 12474 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℝ)
541ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝑅 ∈ Ring)
5513, 17grpsubcl 18827 . . . . . . . . . . . . 13 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → (𝑟 𝑞) ∈ 𝐵)
567, 20, 12, 55syl3anc 1371 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟 𝑞) ∈ 𝐵)
5756adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ∈ 𝐵)
5813, 49, 17grpsubeq0 18833 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
597, 20, 12, 58syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
60 equcom 2021 . . . . . . . . . . . . . 14 (𝑟 = 𝑞𝑞 = 𝑟)
6159, 60bitrdi 286 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑞 = 𝑟))
6261necon3bid 2988 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) ≠ 0𝑞𝑟))
6362biimpar 478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ≠ 0 )
6427, 3, 49, 13deg1nn0cl 25453 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑟 𝑞) ∈ 𝐵 ∧ (𝑟 𝑞) ≠ 0 ) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
6554, 57, 63, 64syl3anc 1371 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
66 nn0addge1 12459 . . . . . . . . . 10 (((𝐷𝐺) ∈ ℝ ∧ (𝐷‘(𝑟 𝑞)) ∈ ℕ0) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
6753, 65, 66syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
68 ply1divmo.e . . . . . . . . . 10 𝐸 = (RLReg‘𝑅)
6910ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺𝐵)
7048ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺0 )
71 ply1divmo.g3 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7271ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7327, 3, 68, 13, 14, 49, 54, 69, 70, 72, 57, 63deg1mul2 25479 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝐺 (𝑟 𝑞))) = ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
7467, 73breqtrrd 5133 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘(𝐺 (𝑟 𝑞))))
75 ringabl 20002 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
765, 75syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Abel)
7713, 17, 76, 9, 16, 22ablnnncan1 19602 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = ((𝐺 𝑟) (𝐺 𝑞)))
7813, 14, 17, 5, 11, 20, 12ringsubdi 20023 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 (𝑟 𝑞)) = ((𝐺 𝑟) (𝐺 𝑞)))
7977, 78eqtr4d 2779 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = (𝐺 (𝑟 𝑞)))
8079fveq2d 6846 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8180adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8274, 81breqtrrd 5133 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))))
8336, 29xrlenltd 11221 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8483adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8582, 84mpbid 231 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
8685ex 413 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝑟 → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8786necon4ad 2962 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺) → 𝑞 = 𝑟))
8847, 87syld 47 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
8988ralrimivva 3197 . 2 (𝜑 → ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
90 oveq2 7365 . . . . . 6 (𝑞 = 𝑟 → (𝐺 𝑞) = (𝐺 𝑟))
9190oveq2d 7373 . . . . 5 (𝑞 = 𝑟 → (𝐹 (𝐺 𝑞)) = (𝐹 (𝐺 𝑟)))
9291fveq2d 6846 . . . 4 (𝑞 = 𝑟 → (𝐷‘(𝐹 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑟))))
9392breq1d 5115 . . 3 (𝑞 = 𝑟 → ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)))
9493rmo4 3688 . 2 (∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
9589, 94sylibr 233 1 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  ∃*wrmo 3352  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  0cn0 12413  Basecbs 17083  .rcmulr 17134  0gc0g 17321  Grpcgrp 18748  -gcsg 18750  Abelcabl 19563  Ringcrg 19964  RLRegcrlreg 20749  Poly1cpl1 21548  coe1cco1 21549   deg1 cdg1 25416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-subrg 20220  df-lmod 20324  df-lss 20393  df-rlreg 20753  df-cnfld 20797  df-psr 21311  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-ply1 21553  df-coe1 21554  df-mdeg 25417  df-deg1 25418
This theorem is referenced by:  ply1divalg  25502
  Copyright terms: Public domain W3C validator