MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divmo Structured version   Visualization version   GIF version

Theorem ply1divmo 24658
Description: Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divmo.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
ply1divmo.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
ply1divmo (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   ,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(𝑞)   𝐸(𝑞)   0 (𝑞)

Proof of Theorem ply1divmo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg.r1 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
21adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑅 ∈ Ring)
3 ply1divalg.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
43ply1ring 20346 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Ring)
6 ringgrp 19233 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
75, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
8 ply1divalg.f . . . . . . . . . . . 12 (𝜑𝐹𝐵)
98adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐹𝐵)
10 ply1divalg.g1 . . . . . . . . . . . . 13 (𝜑𝐺𝐵)
1110adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐺𝐵)
12 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
13 ply1divalg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
14 ply1divalg.t . . . . . . . . . . . . 13 = (.r𝑃)
1513, 14ringcl 19242 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
165, 11, 12, 15syl3anc 1363 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑞) ∈ 𝐵)
17 ply1divalg.m . . . . . . . . . . . 12 = (-g𝑃)
1813, 17grpsubcl 18119 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑞) ∈ 𝐵) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
197, 9, 16, 18syl3anc 1363 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
20 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
2113, 14ringcl 19242 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑟𝐵) → (𝐺 𝑟) ∈ 𝐵)
225, 11, 20, 21syl3anc 1363 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑟) ∈ 𝐵)
2313, 17grpsubcl 18119 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑟) ∈ 𝐵) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
247, 9, 22, 23syl3anc 1363 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
2513, 17grpsubcl 18119 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ (𝐹 (𝐺 𝑞)) ∈ 𝐵 ∧ (𝐹 (𝐺 𝑟)) ∈ 𝐵) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
267, 19, 24, 25syl3anc 1363 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
27 ply1divalg.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
2827, 3, 13deg1xrcl 24605 . . . . . . . . 9 (((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵 → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
2926, 28syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
3027, 3, 13deg1xrcl 24605 . . . . . . . . . 10 ((𝐹 (𝐺 𝑟)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3124, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3227, 3, 13deg1xrcl 24605 . . . . . . . . . 10 ((𝐹 (𝐺 𝑞)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3319, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3431, 33ifcld 4510 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ*)
3527, 3, 13deg1xrcl 24605 . . . . . . . . 9 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3611, 35syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷𝐺) ∈ ℝ*)
3729, 34, 363jca 1120 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
3837adantr 481 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
393, 27, 2, 13, 17, 19, 24deg1suble 24630 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
4039adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
41 xrmaxlt 12564 . . . . . . . . 9 (((𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ* ∧ (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4233, 31, 36, 41syl3anc 1363 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4342biimpar 478 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺))
4440, 43jca 512 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)))
45 xrlelttr 12539 . . . . . 6 (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
4638, 44, 45sylc 65 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
4746ex 413 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
48 ply1divalg.g2 . . . . . . . . . . . . 13 (𝜑𝐺0 )
49 ply1divalg.z . . . . . . . . . . . . . 14 0 = (0g𝑃)
5027, 3, 49, 13deg1nn0cl 24611 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
511, 10, 48, 50syl3anc 1363 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐺) ∈ ℕ0)
5251ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℕ0)
5352nn0red 11945 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℝ)
541ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝑅 ∈ Ring)
5513, 17grpsubcl 18119 . . . . . . . . . . . . 13 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → (𝑟 𝑞) ∈ 𝐵)
567, 20, 12, 55syl3anc 1363 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟 𝑞) ∈ 𝐵)
5756adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ∈ 𝐵)
5813, 49, 17grpsubeq0 18125 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
597, 20, 12, 58syl3anc 1363 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
60 equcom 2016 . . . . . . . . . . . . . 14 (𝑟 = 𝑞𝑞 = 𝑟)
6159, 60syl6bb 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑞 = 𝑟))
6261necon3bid 3060 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) ≠ 0𝑞𝑟))
6362biimpar 478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ≠ 0 )
6427, 3, 49, 13deg1nn0cl 24611 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑟 𝑞) ∈ 𝐵 ∧ (𝑟 𝑞) ≠ 0 ) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
6554, 57, 63, 64syl3anc 1363 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
66 nn0addge1 11932 . . . . . . . . . 10 (((𝐷𝐺) ∈ ℝ ∧ (𝐷‘(𝑟 𝑞)) ∈ ℕ0) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
6753, 65, 66syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
68 ply1divmo.e . . . . . . . . . 10 𝐸 = (RLReg‘𝑅)
6910ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺𝐵)
7048ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺0 )
71 ply1divmo.g3 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7271ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7327, 3, 68, 13, 14, 49, 54, 69, 70, 72, 57, 63deg1mul2 24637 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝐺 (𝑟 𝑞))) = ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
7467, 73breqtrrd 5086 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘(𝐺 (𝑟 𝑞))))
75 ringabl 19261 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
765, 75syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Abel)
7713, 17, 76, 9, 16, 22ablnnncan1 18875 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = ((𝐺 𝑟) (𝐺 𝑞)))
7813, 14, 17, 5, 11, 20, 12ringsubdi 19280 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 (𝑟 𝑞)) = ((𝐺 𝑟) (𝐺 𝑞)))
7977, 78eqtr4d 2859 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = (𝐺 (𝑟 𝑞)))
8079fveq2d 6668 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8180adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8274, 81breqtrrd 5086 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))))
8336, 29xrlenltd 10696 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8483adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8582, 84mpbid 233 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
8685ex 413 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝑟 → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8786necon4ad 3035 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺) → 𝑞 = 𝑟))
8847, 87syld 47 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
8988ralrimivva 3191 . 2 (𝜑 → ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
90 oveq2 7153 . . . . . 6 (𝑞 = 𝑟 → (𝐺 𝑞) = (𝐺 𝑟))
9190oveq2d 7161 . . . . 5 (𝑞 = 𝑟 → (𝐹 (𝐺 𝑞)) = (𝐹 (𝐺 𝑟)))
9291fveq2d 6668 . . . 4 (𝑞 = 𝑟 → (𝐷‘(𝐹 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑟))))
9392breq1d 5068 . . 3 (𝑞 = 𝑟 → ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)))
9493rmo4 3720 . 2 (∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
9589, 94sylibr 235 1 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3016  wral 3138  ∃*wrmo 3141  ifcif 4465   class class class wbr 5058  cfv 6349  (class class class)co 7145  cr 10525   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  0cn0 11886  Basecbs 16473  .rcmulr 16556  0gc0g 16703  Grpcgrp 18043  -gcsg 18045  Abelcabl 18838  Ringcrg 19228  RLRegcrlreg 19982  Poly1cpl1 20275  coe1cco1 20276   deg1 cdg1 24577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-fzo 13024  df-seq 13360  df-hash 13681  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-0g 16705  df-gsum 16706  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-mhm 17946  df-submnd 17947  df-grp 18046  df-minusg 18047  df-sbg 18048  df-mulg 18165  df-subg 18216  df-ghm 18296  df-cntz 18387  df-cmn 18839  df-abl 18840  df-mgp 19171  df-ur 19183  df-ring 19230  df-cring 19231  df-oppr 19304  df-dvdsr 19322  df-unit 19323  df-invr 19353  df-subrg 19464  df-lmod 19567  df-lss 19635  df-rlreg 19986  df-psr 20066  df-mpl 20068  df-opsr 20070  df-psr1 20278  df-ply1 20280  df-coe1 20281  df-cnfld 20476  df-mdeg 24578  df-deg1 24579
This theorem is referenced by:  ply1divalg  24660
  Copyright terms: Public domain W3C validator