MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divmo Structured version   Visualization version   GIF version

Theorem ply1divmo 24236
Description: Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divmo.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
ply1divmo.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
ply1divmo (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   ,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(𝑞)   𝐸(𝑞)   0 (𝑞)

Proof of Theorem ply1divmo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg.r1 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
21adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑅 ∈ Ring)
3 ply1divalg.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
43ply1ring 19940 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Ring)
6 ringgrp 18868 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
75, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
8 ply1divalg.f . . . . . . . . . . . 12 (𝜑𝐹𝐵)
98adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐹𝐵)
10 ply1divalg.g1 . . . . . . . . . . . . 13 (𝜑𝐺𝐵)
1110adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐺𝐵)
12 simprl 788 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
13 ply1divalg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
14 ply1divalg.t . . . . . . . . . . . . 13 = (.r𝑃)
1513, 14ringcl 18877 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
165, 11, 12, 15syl3anc 1491 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑞) ∈ 𝐵)
17 ply1divalg.m . . . . . . . . . . . 12 = (-g𝑃)
1813, 17grpsubcl 17811 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑞) ∈ 𝐵) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
197, 9, 16, 18syl3anc 1491 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
20 simprr 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
2113, 14ringcl 18877 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑟𝐵) → (𝐺 𝑟) ∈ 𝐵)
225, 11, 20, 21syl3anc 1491 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑟) ∈ 𝐵)
2313, 17grpsubcl 17811 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑟) ∈ 𝐵) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
247, 9, 22, 23syl3anc 1491 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
2513, 17grpsubcl 17811 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ (𝐹 (𝐺 𝑞)) ∈ 𝐵 ∧ (𝐹 (𝐺 𝑟)) ∈ 𝐵) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
267, 19, 24, 25syl3anc 1491 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
27 ply1divalg.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
2827, 3, 13deg1xrcl 24183 . . . . . . . . 9 (((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵 → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
2926, 28syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
3027, 3, 13deg1xrcl 24183 . . . . . . . . . 10 ((𝐹 (𝐺 𝑟)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3124, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3227, 3, 13deg1xrcl 24183 . . . . . . . . . 10 ((𝐹 (𝐺 𝑞)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3319, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3431, 33ifcld 4322 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ*)
3527, 3, 13deg1xrcl 24183 . . . . . . . . 9 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3611, 35syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷𝐺) ∈ ℝ*)
3729, 34, 363jca 1159 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
3837adantr 473 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
393, 27, 2, 13, 17, 19, 24deg1suble 24208 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
4039adantr 473 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
41 xrmaxlt 12261 . . . . . . . . 9 (((𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ* ∧ (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4233, 31, 36, 41syl3anc 1491 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4342biimpar 470 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺))
4440, 43jca 508 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)))
45 xrlelttr 12236 . . . . . 6 (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
4638, 44, 45sylc 65 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
4746ex 402 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
48 ply1divalg.g2 . . . . . . . . . . . . 13 (𝜑𝐺0 )
49 ply1divalg.z . . . . . . . . . . . . . 14 0 = (0g𝑃)
5027, 3, 49, 13deg1nn0cl 24189 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
511, 10, 48, 50syl3anc 1491 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐺) ∈ ℕ0)
5251ad2antrr 718 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℕ0)
5352nn0red 11641 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℝ)
541ad2antrr 718 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝑅 ∈ Ring)
5513, 17grpsubcl 17811 . . . . . . . . . . . . 13 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → (𝑟 𝑞) ∈ 𝐵)
567, 20, 12, 55syl3anc 1491 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟 𝑞) ∈ 𝐵)
5756adantr 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ∈ 𝐵)
5813, 49, 17grpsubeq0 17817 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
597, 20, 12, 58syl3anc 1491 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
60 equcom 2117 . . . . . . . . . . . . . 14 (𝑟 = 𝑞𝑞 = 𝑟)
6159, 60syl6bb 279 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑞 = 𝑟))
6261necon3bid 3015 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) ≠ 0𝑞𝑟))
6362biimpar 470 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ≠ 0 )
6427, 3, 49, 13deg1nn0cl 24189 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑟 𝑞) ∈ 𝐵 ∧ (𝑟 𝑞) ≠ 0 ) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
6554, 57, 63, 64syl3anc 1491 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
66 nn0addge1 11628 . . . . . . . . . 10 (((𝐷𝐺) ∈ ℝ ∧ (𝐷‘(𝑟 𝑞)) ∈ ℕ0) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
6753, 65, 66syl2anc 580 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
68 ply1divmo.e . . . . . . . . . 10 𝐸 = (RLReg‘𝑅)
6910ad2antrr 718 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺𝐵)
7048ad2antrr 718 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺0 )
71 ply1divmo.g3 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7271ad2antrr 718 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7327, 3, 68, 13, 14, 49, 54, 69, 70, 72, 57, 63deg1mul2 24215 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝐺 (𝑟 𝑞))) = ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
7467, 73breqtrrd 4871 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘(𝐺 (𝑟 𝑞))))
75 ringabl 18896 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
765, 75syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Abel)
7713, 17, 76, 9, 16, 22ablnnncan1 18544 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = ((𝐺 𝑟) (𝐺 𝑞)))
7813, 14, 17, 5, 11, 20, 12ringsubdi 18915 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 (𝑟 𝑞)) = ((𝐺 𝑟) (𝐺 𝑞)))
7977, 78eqtr4d 2836 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = (𝐺 (𝑟 𝑞)))
8079fveq2d 6415 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8180adantr 473 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8274, 81breqtrrd 4871 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))))
83 xrlenlt 10393 . . . . . . . . 9 (((𝐷𝐺) ∈ ℝ* ∧ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8436, 29, 83syl2anc 580 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8584adantr 473 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8682, 85mpbid 224 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
8786ex 402 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝑟 → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8887necon4ad 2990 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺) → 𝑞 = 𝑟))
8947, 88syld 47 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
9089ralrimivva 3152 . 2 (𝜑 → ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
91 oveq2 6886 . . . . . 6 (𝑞 = 𝑟 → (𝐺 𝑞) = (𝐺 𝑟))
9291oveq2d 6894 . . . . 5 (𝑞 = 𝑟 → (𝐹 (𝐺 𝑞)) = (𝐹 (𝐺 𝑟)))
9392fveq2d 6415 . . . 4 (𝑞 = 𝑟 → (𝐷‘(𝐹 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑟))))
9493breq1d 4853 . . 3 (𝑞 = 𝑟 → ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)))
9594rmo4 3595 . 2 (∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
9690, 95sylibr 226 1 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  ∃*wrmo 3092  ifcif 4277   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223   + caddc 10227  *cxr 10362   < clt 10363  cle 10364  0cn0 11580  Basecbs 16184  .rcmulr 16268  0gc0g 16415  Grpcgrp 17738  -gcsg 17740  Abelcabl 18509  Ringcrg 18863  RLRegcrlreg 19602  Poly1cpl1 19869  coe1cco1 19870   deg1 cdg1 24155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-ofr 7132  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-0g 16417  df-gsum 16418  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-mulg 17857  df-subg 17904  df-ghm 17971  df-cntz 18062  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-subrg 19096  df-lmod 19183  df-lss 19251  df-rlreg 19606  df-psr 19679  df-mpl 19681  df-opsr 19683  df-psr1 19872  df-ply1 19874  df-coe1 19875  df-cnfld 20069  df-mdeg 24156  df-deg1 24157
This theorem is referenced by:  ply1divalg  24238
  Copyright terms: Public domain W3C validator