MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divmo Structured version   Visualization version   GIF version

Theorem ply1divmo 24736
Description: Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divmo.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
ply1divmo.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
ply1divmo (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   ,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(𝑞)   𝐸(𝑞)   0 (𝑞)

Proof of Theorem ply1divmo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg.r1 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
21adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑅 ∈ Ring)
3 ply1divalg.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
43ply1ring 20877 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Ring)
6 ringgrp 19295 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
75, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
8 ply1divalg.f . . . . . . . . . . . 12 (𝜑𝐹𝐵)
98adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐹𝐵)
10 ply1divalg.g1 . . . . . . . . . . . . 13 (𝜑𝐺𝐵)
1110adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐺𝐵)
12 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
13 ply1divalg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
14 ply1divalg.t . . . . . . . . . . . . 13 = (.r𝑃)
1513, 14ringcl 19307 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
165, 11, 12, 15syl3anc 1368 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑞) ∈ 𝐵)
17 ply1divalg.m . . . . . . . . . . . 12 = (-g𝑃)
1813, 17grpsubcl 18171 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑞) ∈ 𝐵) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
197, 9, 16, 18syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑞)) ∈ 𝐵)
20 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
2113, 14ringcl 19307 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑟𝐵) → (𝐺 𝑟) ∈ 𝐵)
225, 11, 20, 21syl3anc 1368 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 𝑟) ∈ 𝐵)
2313, 17grpsubcl 18171 . . . . . . . . . . 11 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝐺 𝑟) ∈ 𝐵) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
247, 9, 22, 23syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐹 (𝐺 𝑟)) ∈ 𝐵)
2513, 17grpsubcl 18171 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ (𝐹 (𝐺 𝑞)) ∈ 𝐵 ∧ (𝐹 (𝐺 𝑟)) ∈ 𝐵) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
267, 19, 24, 25syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵)
27 ply1divalg.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
2827, 3, 13deg1xrcl 24683 . . . . . . . . 9 (((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) ∈ 𝐵 → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
2926, 28syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ*)
3027, 3, 13deg1xrcl 24683 . . . . . . . . . 10 ((𝐹 (𝐺 𝑟)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3124, 30syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ*)
3227, 3, 13deg1xrcl 24683 . . . . . . . . . 10 ((𝐹 (𝐺 𝑞)) ∈ 𝐵 → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3319, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ*)
3431, 33ifcld 4470 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ*)
3527, 3, 13deg1xrcl 24683 . . . . . . . . 9 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3611, 35syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷𝐺) ∈ ℝ*)
3729, 34, 363jca 1125 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
3837adantr 484 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*))
393, 27, 2, 13, 17, 19, 24deg1suble 24708 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
4039adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))))
41 xrmaxlt 12562 . . . . . . . . 9 (((𝐷‘(𝐹 (𝐺 𝑞))) ∈ ℝ* ∧ (𝐷‘(𝐹 (𝐺 𝑟))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4233, 31, 36, 41syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺) ↔ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))))
4342biimpar 481 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺))
4440, 43jca 515 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)))
45 xrlelttr 12537 . . . . . 6 (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ∈ ℝ* ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ≤ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) ∧ if((𝐷‘(𝐹 (𝐺 𝑞))) ≤ (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑟))), (𝐷‘(𝐹 (𝐺 𝑞)))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
4638, 44, 45sylc 65 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺))) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
4746ex 416 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
48 ply1divalg.g2 . . . . . . . . . . . . 13 (𝜑𝐺0 )
49 ply1divalg.z . . . . . . . . . . . . . 14 0 = (0g𝑃)
5027, 3, 49, 13deg1nn0cl 24689 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
511, 10, 48, 50syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐺) ∈ ℕ0)
5251ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℕ0)
5352nn0red 11944 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ∈ ℝ)
541ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝑅 ∈ Ring)
5513, 17grpsubcl 18171 . . . . . . . . . . . . 13 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → (𝑟 𝑞) ∈ 𝐵)
567, 20, 12, 55syl3anc 1368 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟 𝑞) ∈ 𝐵)
5756adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ∈ 𝐵)
5813, 49, 17grpsubeq0 18177 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
597, 20, 12, 58syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑟 = 𝑞))
60 equcom 2025 . . . . . . . . . . . . . 14 (𝑟 = 𝑞𝑞 = 𝑟)
6159, 60syl6bb 290 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) = 0𝑞 = 𝑟))
6261necon3bid 3031 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑟 𝑞) ≠ 0𝑞𝑟))
6362biimpar 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝑟 𝑞) ≠ 0 )
6427, 3, 49, 13deg1nn0cl 24689 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑟 𝑞) ∈ 𝐵 ∧ (𝑟 𝑞) ≠ 0 ) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
6554, 57, 63, 64syl3anc 1368 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝑟 𝑞)) ∈ ℕ0)
66 nn0addge1 11931 . . . . . . . . . 10 (((𝐷𝐺) ∈ ℝ ∧ (𝐷‘(𝑟 𝑞)) ∈ ℕ0) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
6753, 65, 66syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
68 ply1divmo.e . . . . . . . . . 10 𝐸 = (RLReg‘𝑅)
6910ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺𝐵)
7048ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → 𝐺0 )
71 ply1divmo.g3 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7271ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐸)
7327, 3, 68, 13, 14, 49, 54, 69, 70, 72, 57, 63deg1mul2 24715 . . . . . . . . 9 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘(𝐺 (𝑟 𝑞))) = ((𝐷𝐺) + (𝐷‘(𝑟 𝑞))))
7467, 73breqtrrd 5058 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘(𝐺 (𝑟 𝑞))))
75 ringabl 19326 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
765, 75syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Abel)
7713, 17, 76, 9, 16, 22ablnnncan1 18937 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = ((𝐺 𝑟) (𝐺 𝑞)))
7813, 14, 17, 5, 11, 20, 12ringsubdi 19345 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐺 (𝑟 𝑞)) = ((𝐺 𝑟) (𝐺 𝑞)))
7977, 78eqtr4d 2836 . . . . . . . . . 10 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟))) = (𝐺 (𝑟 𝑞)))
8079fveq2d 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8180adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) = (𝐷‘(𝐺 (𝑟 𝑞))))
8274, 81breqtrrd 5058 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → (𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))))
8336, 29xrlenltd 10696 . . . . . . . 8 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8483adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ((𝐷𝐺) ≤ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) ↔ ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8582, 84mpbid 235 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝑞𝑟) → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺))
8685ex 416 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝑟 → ¬ (𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺)))
8786necon4ad 3006 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐷‘((𝐹 (𝐺 𝑞)) (𝐹 (𝐺 𝑟)))) < (𝐷𝐺) → 𝑞 = 𝑟))
8847, 87syld 47 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
8988ralrimivva 3156 . 2 (𝜑 → ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
90 oveq2 7143 . . . . . 6 (𝑞 = 𝑟 → (𝐺 𝑞) = (𝐺 𝑟))
9190oveq2d 7151 . . . . 5 (𝑞 = 𝑟 → (𝐹 (𝐺 𝑞)) = (𝐹 (𝐺 𝑟)))
9291fveq2d 6649 . . . 4 (𝑞 = 𝑟 → (𝐷‘(𝐹 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑟))))
9392breq1d 5040 . . 3 (𝑞 = 𝑟 → ((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)))
9493rmo4 3669 . 2 (∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∀𝑞𝐵𝑟𝐵 (((𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ (𝐷‘(𝐹 (𝐺 𝑟))) < (𝐷𝐺)) → 𝑞 = 𝑟))
9589, 94sylibr 237 1 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  ∃*wrmo 3109  ifcif 4425   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  0cn0 11885  Basecbs 16475  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  Abelcabl 18899  Ringcrg 19290  RLRegcrlreg 20045  Poly1cpl1 20806  coe1cco1 20807   deg1 cdg1 24655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-subrg 19526  df-lmod 19629  df-lss 19697  df-rlreg 20049  df-cnfld 20092  df-psr 20594  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-ply1 20811  df-coe1 20812  df-mdeg 24656  df-deg1 24657
This theorem is referenced by:  ply1divalg  24738
  Copyright terms: Public domain W3C validator