MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval Structured version   Visualization version   GIF version

Theorem ig1pval 26079
Description: Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pval.z 0 = (0g𝑃)
ig1pval.u 𝑈 = (LIdeal‘𝑃)
ig1pval.d 𝐷 = (deg1𝑅)
ig1pval.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
ig1pval ((𝑅𝑉𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
Distinct variable groups:   𝑔,𝐼   𝑔,𝑀   𝑅,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑃(𝑔)   𝑈(𝑔)   𝐺(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem ig1pval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ig1pval.g . . . 4 𝐺 = (idlGen1p𝑅)
2 elex 3457 . . . . 5 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6822 . . . . . . . . . 10 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
4 ig1pval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
53, 4eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
65fveq2d 6826 . . . . . . . 8 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
7 ig1pval.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7eqtr4di 2782 . . . . . . 7 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
95fveq2d 6826 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
10 ig1pval.z . . . . . . . . . . 11 0 = (0g𝑃)
119, 10eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1211sneqd 4589 . . . . . . . . 9 (𝑟 = 𝑅 → {(0g‘(Poly1𝑟))} = { 0 })
1312eqeq2d 2740 . . . . . . . 8 (𝑟 = 𝑅 → (𝑖 = {(0g‘(Poly1𝑟))} ↔ 𝑖 = { 0 }))
14 fveq2 6822 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Monic1p𝑟) = (Monic1p𝑅))
15 ig1pval.m . . . . . . . . . . 11 𝑀 = (Monic1p𝑅)
1614, 15eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (Monic1p𝑟) = 𝑀)
1716ineq2d 4171 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑖 ∩ (Monic1p𝑟)) = (𝑖𝑀))
18 fveq2 6822 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (deg1𝑟) = (deg1𝑅))
19 ig1pval.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
2018, 19eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (deg1𝑟) = 𝐷)
2120fveq1d 6824 . . . . . . . . . 10 (𝑟 = 𝑅 → ((deg1𝑟)‘𝑔) = (𝐷𝑔))
2212difeq2d 4077 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝑖 ∖ {(0g‘(Poly1𝑟))}) = (𝑖 ∖ { 0 }))
2320, 22imaeq12d 6012 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})) = (𝐷 “ (𝑖 ∖ { 0 })))
2423infeq1d 9368 . . . . . . . . . 10 (𝑟 = 𝑅 → inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < ) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))
2521, 24eqeq12d 2745 . . . . . . . . 9 (𝑟 = 𝑅 → (((deg1𝑟)‘𝑔) = inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < ) ↔ (𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))
2617, 25riotaeqbidv 7309 . . . . . . . 8 (𝑟 = 𝑅 → (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))((deg1𝑟)‘𝑔) = inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )) = (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))
2713, 11, 26ifbieq12d 4505 . . . . . . 7 (𝑟 = 𝑅 → if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))((deg1𝑟)‘𝑔) = inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < ))) = if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))
288, 27mpteq12dv 5179 . . . . . 6 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))((deg1𝑟)‘𝑔) = inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )))) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
29 df-ig1p 26038 . . . . . 6 idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))((deg1𝑟)‘𝑔) = inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )))))
3028, 29, 7mptfvmpt 7164 . . . . 5 (𝑅 ∈ V → (idlGen1p𝑅) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
312, 30syl 17 . . . 4 (𝑅𝑉 → (idlGen1p𝑅) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
321, 31eqtrid 2776 . . 3 (𝑅𝑉𝐺 = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
3332fveq1d 6824 . 2 (𝑅𝑉 → (𝐺𝐼) = ((𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))‘𝐼))
34 eqeq1 2733 . . . 4 (𝑖 = 𝐼 → (𝑖 = { 0 } ↔ 𝐼 = { 0 }))
35 ineq1 4164 . . . . 5 (𝑖 = 𝐼 → (𝑖𝑀) = (𝐼𝑀))
36 difeq1 4070 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖 ∖ { 0 }) = (𝐼 ∖ { 0 }))
3736imaeq2d 6011 . . . . . . 7 (𝑖 = 𝐼 → (𝐷 “ (𝑖 ∖ { 0 })) = (𝐷 “ (𝐼 ∖ { 0 })))
3837infeq1d 9368 . . . . . 6 (𝑖 = 𝐼 → inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
3938eqeq2d 2740 . . . . 5 (𝑖 = 𝐼 → ((𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4035, 39riotaeqbidv 7309 . . . 4 (𝑖 = 𝐼 → (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4134, 40ifbieq2d 4503 . . 3 (𝑖 = 𝐼 → if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
42 eqid 2729 . . 3 (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))
4310fvexi 6836 . . . 4 0 ∈ V
44 riotaex 7310 . . . 4 (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ V
4543, 44ifex 4527 . . 3 if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) ∈ V
4641, 42, 45fvmpt 6930 . 2 (𝐼𝑈 → ((𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))‘𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
4733, 46sylan9eq 2784 1 ((𝑅𝑉𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  cin 3902  ifcif 4476  {csn 4577  cmpt 5173  cima 5622  cfv 6482  crio 7305  infcinf 9331  cr 11008   < clt 11149  0gc0g 17343  LIdealclidl 21113  Poly1cpl1 22059  deg1cdg1 25957  Monic1pcmn1 26029  idlGen1pcig1p 26033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-sup 9332  df-inf 9333  df-ig1p 26038
This theorem is referenced by:  ig1pval2  26080  ig1pval3  26081
  Copyright terms: Public domain W3C validator