| Step | Hyp | Ref
| Expression |
| 1 | | ig1pval.g |
. . . 4
⊢ 𝐺 =
(idlGen1p‘𝑅) |
| 2 | | elex 3501 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
| 3 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
| 4 | | ig1pval.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
| 5 | 3, 4 | eqtr4di 2795 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) = 𝑃) |
| 6 | 5 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = (LIdeal‘𝑃)) |
| 7 | | ig1pval.u |
. . . . . . . 8
⊢ 𝑈 = (LIdeal‘𝑃) |
| 8 | 6, 7 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = 𝑈) |
| 9 | 5 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 →
(0g‘(Poly1‘𝑟)) = (0g‘𝑃)) |
| 10 | | ig1pval.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑃) |
| 11 | 9, 10 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 →
(0g‘(Poly1‘𝑟)) = 0 ) |
| 12 | 11 | sneqd 4638 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 →
{(0g‘(Poly1‘𝑟))} = { 0 }) |
| 13 | 12 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑖 =
{(0g‘(Poly1‘𝑟))} ↔ 𝑖 = { 0 })) |
| 14 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (Monic1p‘𝑟) =
(Monic1p‘𝑅)) |
| 15 | | ig1pval.m |
. . . . . . . . . . 11
⊢ 𝑀 =
(Monic1p‘𝑅) |
| 16 | 14, 15 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (Monic1p‘𝑟) = 𝑀) |
| 17 | 16 | ineq2d 4220 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑖 ∩ (Monic1p‘𝑟)) = (𝑖 ∩ 𝑀)) |
| 18 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (deg1‘𝑟) = (deg1‘𝑅)) |
| 19 | | ig1pval.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (deg1‘𝑅) |
| 20 | 18, 19 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (deg1‘𝑟) = 𝐷) |
| 21 | 20 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → ((deg1‘𝑟)‘𝑔) = (𝐷‘𝑔)) |
| 22 | 12 | difeq2d 4126 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (𝑖 ∖
{(0g‘(Poly1‘𝑟))}) = (𝑖 ∖ { 0 })) |
| 23 | 20, 22 | imaeq12d 6079 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → ((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})) = (𝐷 “ (𝑖 ∖ { 0 }))) |
| 24 | 23 | infeq1d 9517 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
)) |
| 25 | 21, 24 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ) ↔ (𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))) |
| 26 | 17, 25 | riotaeqbidv 7391 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )) =
(℩𝑔 ∈
(𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))) |
| 27 | 13, 11, 26 | ifbieq12d 4554 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))) = if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
)))) |
| 28 | 8, 27 | mpteq12dv 5233 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < )))) = (𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))))) |
| 29 | | df-ig1p 26174 |
. . . . . 6
⊢
idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |
| 30 | 28, 29, 7 | mptfvmpt 7248 |
. . . . 5
⊢ (𝑅 ∈ V →
(idlGen1p‘𝑅) = (𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))))) |
| 31 | 2, 30 | syl 17 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (idlGen1p‘𝑅) = (𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))))) |
| 32 | 1, 31 | eqtrid 2789 |
. . 3
⊢ (𝑅 ∈ 𝑉 → 𝐺 = (𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))))) |
| 33 | 32 | fveq1d 6908 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝐺‘𝐼) = ((𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))))‘𝐼)) |
| 34 | | eqeq1 2741 |
. . . 4
⊢ (𝑖 = 𝐼 → (𝑖 = { 0 } ↔ 𝐼 = { 0 })) |
| 35 | | ineq1 4213 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑖 ∩ 𝑀) = (𝐼 ∩ 𝑀)) |
| 36 | | difeq1 4119 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (𝑖 ∖ { 0 }) = (𝐼 ∖ { 0 })) |
| 37 | 36 | imaeq2d 6078 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (𝐷 “ (𝑖 ∖ { 0 })) = (𝐷 “ (𝐼 ∖ { 0 }))) |
| 38 | 37 | infeq1d 9517 |
. . . . . 6
⊢ (𝑖 = 𝐼 → inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ) =
inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |
| 39 | 38 | eqeq2d 2748 |
. . . . 5
⊢ (𝑖 = 𝐼 → ((𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )
↔ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
| 40 | 35, 39 | riotaeqbidv 7391 |
. . . 4
⊢ (𝑖 = 𝐼 → (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )) =
(℩𝑔 ∈
(𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
| 41 | 34, 40 | ifbieq2d 4552 |
. . 3
⊢ (𝑖 = 𝐼 → if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))) =
if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)))) |
| 42 | | eqid 2737 |
. . 3
⊢ (𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))) =
(𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
)))) |
| 43 | 10 | fvexi 6920 |
. . . 4
⊢ 0 ∈
V |
| 44 | | riotaex 7392 |
. . . 4
⊢
(℩𝑔
∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
∈ V |
| 45 | 43, 44 | ifex 4576 |
. . 3
⊢ if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
∈ V |
| 46 | 41, 42, 45 | fvmpt 7016 |
. 2
⊢ (𝐼 ∈ 𝑈 → ((𝑖 ∈ 𝑈 ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, <
))))‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)))) |
| 47 | 33, 46 | sylan9eq 2797 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)))) |