MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval Structured version   Visualization version   GIF version

Theorem ig1pval 25560
Description: Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1β€˜π‘…)
ig1pval.g 𝐺 = (idlGen1pβ€˜π‘…)
ig1pval.z 0 = (0gβ€˜π‘ƒ)
ig1pval.u π‘ˆ = (LIdealβ€˜π‘ƒ)
ig1pval.d 𝐷 = ( deg1 β€˜π‘…)
ig1pval.m 𝑀 = (Monic1pβ€˜π‘…)
Assertion
Ref Expression
ig1pval ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ π‘ˆ) β†’ (πΊβ€˜πΌ) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < ))))
Distinct variable groups:   𝑔,𝐼   𝑔,𝑀   𝑅,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑃(𝑔)   π‘ˆ(𝑔)   𝐺(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem ig1pval
Dummy variables 𝑖 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ig1pval.g . . . 4 𝐺 = (idlGen1pβ€˜π‘…)
2 elex 3465 . . . . 5 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
3 fveq2 6846 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (Poly1β€˜π‘Ÿ) = (Poly1β€˜π‘…))
4 ig1pval.p . . . . . . . . . 10 𝑃 = (Poly1β€˜π‘…)
53, 4eqtr4di 2791 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (Poly1β€˜π‘Ÿ) = 𝑃)
65fveq2d 6850 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) = (LIdealβ€˜π‘ƒ))
7 ig1pval.u . . . . . . . 8 π‘ˆ = (LIdealβ€˜π‘ƒ)
86, 7eqtr4di 2791 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) = π‘ˆ)
95fveq2d 6850 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (0gβ€˜(Poly1β€˜π‘Ÿ)) = (0gβ€˜π‘ƒ))
10 ig1pval.z . . . . . . . . . . 11 0 = (0gβ€˜π‘ƒ)
119, 10eqtr4di 2791 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (0gβ€˜(Poly1β€˜π‘Ÿ)) = 0 )
1211sneqd 4602 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ {(0gβ€˜(Poly1β€˜π‘Ÿ))} = { 0 })
1312eqeq2d 2744 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (𝑖 = {(0gβ€˜(Poly1β€˜π‘Ÿ))} ↔ 𝑖 = { 0 }))
14 fveq2 6846 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (Monic1pβ€˜π‘Ÿ) = (Monic1pβ€˜π‘…))
15 ig1pval.m . . . . . . . . . . 11 𝑀 = (Monic1pβ€˜π‘…)
1614, 15eqtr4di 2791 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (Monic1pβ€˜π‘Ÿ) = 𝑀)
1716ineq2d 4176 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (𝑖 ∩ (Monic1pβ€˜π‘Ÿ)) = (𝑖 ∩ 𝑀))
18 fveq2 6846 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ ( deg1 β€˜π‘Ÿ) = ( deg1 β€˜π‘…))
19 ig1pval.d . . . . . . . . . . . 12 𝐷 = ( deg1 β€˜π‘…)
2018, 19eqtr4di 2791 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ ( deg1 β€˜π‘Ÿ) = 𝐷)
2120fveq1d 6848 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (( deg1 β€˜π‘Ÿ)β€˜π‘”) = (π·β€˜π‘”))
2212difeq2d 4086 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))}) = (𝑖 βˆ– { 0 }))
2320, 22imaeq12d 6018 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})) = (𝐷 β€œ (𝑖 βˆ– { 0 })))
2423infeq1d 9421 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < ) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ))
2521, 24eqeq12d 2749 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ((( deg1 β€˜π‘Ÿ)β€˜π‘”) = inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < ) ↔ (π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))
2617, 25riotaeqbidv 7320 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (℩𝑔 ∈ (𝑖 ∩ (Monic1pβ€˜π‘Ÿ))(( deg1 β€˜π‘Ÿ)β€˜π‘”) = inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < )) = (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))
2713, 11, 26ifbieq12d 4518 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ if(𝑖 = {(0gβ€˜(Poly1β€˜π‘Ÿ))}, (0gβ€˜(Poly1β€˜π‘Ÿ)), (℩𝑔 ∈ (𝑖 ∩ (Monic1pβ€˜π‘Ÿ))(( deg1 β€˜π‘Ÿ)β€˜π‘”) = inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < ))) = if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ))))
288, 27mpteq12dv 5200 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (𝑖 ∈ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) ↦ if(𝑖 = {(0gβ€˜(Poly1β€˜π‘Ÿ))}, (0gβ€˜(Poly1β€˜π‘Ÿ)), (℩𝑔 ∈ (𝑖 ∩ (Monic1pβ€˜π‘Ÿ))(( deg1 β€˜π‘Ÿ)β€˜π‘”) = inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < )))) = (𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))))
29 df-ig1p 25522 . . . . . 6 idlGen1p = (π‘Ÿ ∈ V ↦ (𝑖 ∈ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) ↦ if(𝑖 = {(0gβ€˜(Poly1β€˜π‘Ÿ))}, (0gβ€˜(Poly1β€˜π‘Ÿ)), (℩𝑔 ∈ (𝑖 ∩ (Monic1pβ€˜π‘Ÿ))(( deg1 β€˜π‘Ÿ)β€˜π‘”) = inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < )))))
3028, 29, 7mptfvmpt 7182 . . . . 5 (𝑅 ∈ V β†’ (idlGen1pβ€˜π‘…) = (𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))))
312, 30syl 17 . . . 4 (𝑅 ∈ 𝑉 β†’ (idlGen1pβ€˜π‘…) = (𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))))
321, 31eqtrid 2785 . . 3 (𝑅 ∈ 𝑉 β†’ 𝐺 = (𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))))
3332fveq1d 6848 . 2 (𝑅 ∈ 𝑉 β†’ (πΊβ€˜πΌ) = ((𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ))))β€˜πΌ))
34 eqeq1 2737 . . . 4 (𝑖 = 𝐼 β†’ (𝑖 = { 0 } ↔ 𝐼 = { 0 }))
35 ineq1 4169 . . . . 5 (𝑖 = 𝐼 β†’ (𝑖 ∩ 𝑀) = (𝐼 ∩ 𝑀))
36 difeq1 4079 . . . . . . . 8 (𝑖 = 𝐼 β†’ (𝑖 βˆ– { 0 }) = (𝐼 βˆ– { 0 }))
3736imaeq2d 6017 . . . . . . 7 (𝑖 = 𝐼 β†’ (𝐷 β€œ (𝑖 βˆ– { 0 })) = (𝐷 β€œ (𝐼 βˆ– { 0 })))
3837infeq1d 9421 . . . . . 6 (𝑖 = 𝐼 β†’ inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < ))
3938eqeq2d 2744 . . . . 5 (𝑖 = 𝐼 β†’ ((π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ) ↔ (π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < )))
4035, 39riotaeqbidv 7320 . . . 4 (𝑖 = 𝐼 β†’ (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < )))
4134, 40ifbieq2d 4516 . . 3 (𝑖 = 𝐼 β†’ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ))) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < ))))
42 eqid 2733 . . 3 (𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < )))) = (𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ))))
4310fvexi 6860 . . . 4 0 ∈ V
44 riotaex 7321 . . . 4 (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < )) ∈ V
4543, 44ifex 4540 . . 3 if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < ))) ∈ V
4641, 42, 45fvmpt 6952 . 2 (𝐼 ∈ π‘ˆ β†’ ((𝑖 ∈ π‘ˆ ↦ if(𝑖 = { 0 }, 0 , (℩𝑔 ∈ (𝑖 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝑖 βˆ– { 0 })), ℝ, < ))))β€˜πΌ) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < ))))
4733, 46sylan9eq 2793 1 ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ π‘ˆ) β†’ (πΊβ€˜πΌ) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(π·β€˜π‘”) = inf((𝐷 β€œ (𝐼 βˆ– { 0 })), ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3447   βˆ– cdif 3911   ∩ cin 3913  ifcif 4490  {csn 4590   ↦ cmpt 5192   β€œ cima 5640  β€˜cfv 6500  β„©crio 7316  infcinf 9385  β„cr 11058   < clt 11197  0gc0g 17329  LIdealclidl 20676  Poly1cpl1 21571   deg1 cdg1 25439  Monic1pcmn1 25513  idlGen1pcig1p 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-sup 9386  df-inf 9387  df-ig1p 25522
This theorem is referenced by:  ig1pval2  25561  ig1pval3  25562
  Copyright terms: Public domain W3C validator