Step | Hyp | Ref
| Expression |
1 | | ig1pval.g |
. . . 4
β’ πΊ =
(idlGen1pβπ
) |
2 | | elex 3465 |
. . . . 5
β’ (π
β π β π
β V) |
3 | | fveq2 6846 |
. . . . . . . . . 10
β’ (π = π
β (Poly1βπ) =
(Poly1βπ
)) |
4 | | ig1pval.p |
. . . . . . . . . 10
β’ π = (Poly1βπ
) |
5 | 3, 4 | eqtr4di 2791 |
. . . . . . . . 9
β’ (π = π
β (Poly1βπ) = π) |
6 | 5 | fveq2d 6850 |
. . . . . . . 8
β’ (π = π
β
(LIdealβ(Poly1βπ)) = (LIdealβπ)) |
7 | | ig1pval.u |
. . . . . . . 8
β’ π = (LIdealβπ) |
8 | 6, 7 | eqtr4di 2791 |
. . . . . . 7
β’ (π = π
β
(LIdealβ(Poly1βπ)) = π) |
9 | 5 | fveq2d 6850 |
. . . . . . . . . . 11
β’ (π = π
β
(0gβ(Poly1βπ)) = (0gβπ)) |
10 | | ig1pval.z |
. . . . . . . . . . 11
β’ 0 =
(0gβπ) |
11 | 9, 10 | eqtr4di 2791 |
. . . . . . . . . 10
β’ (π = π
β
(0gβ(Poly1βπ)) = 0 ) |
12 | 11 | sneqd 4602 |
. . . . . . . . 9
β’ (π = π
β
{(0gβ(Poly1βπ))} = { 0 }) |
13 | 12 | eqeq2d 2744 |
. . . . . . . 8
β’ (π = π
β (π =
{(0gβ(Poly1βπ))} β π = { 0 })) |
14 | | fveq2 6846 |
. . . . . . . . . . 11
β’ (π = π
β (Monic1pβπ) =
(Monic1pβπ
)) |
15 | | ig1pval.m |
. . . . . . . . . . 11
β’ π =
(Monic1pβπ
) |
16 | 14, 15 | eqtr4di 2791 |
. . . . . . . . . 10
β’ (π = π
β (Monic1pβπ) = π) |
17 | 16 | ineq2d 4176 |
. . . . . . . . 9
β’ (π = π
β (π β© (Monic1pβπ)) = (π β© π)) |
18 | | fveq2 6846 |
. . . . . . . . . . . 12
β’ (π = π
β ( deg1 βπ) = ( deg1
βπ
)) |
19 | | ig1pval.d |
. . . . . . . . . . . 12
β’ π· = ( deg1
βπ
) |
20 | 18, 19 | eqtr4di 2791 |
. . . . . . . . . . 11
β’ (π = π
β ( deg1 βπ) = π·) |
21 | 20 | fveq1d 6848 |
. . . . . . . . . 10
β’ (π = π
β (( deg1 βπ)βπ) = (π·βπ)) |
22 | 12 | difeq2d 4086 |
. . . . . . . . . . . 12
β’ (π = π
β (π β
{(0gβ(Poly1βπ))}) = (π β { 0 })) |
23 | 20, 22 | imaeq12d 6018 |
. . . . . . . . . . 11
β’ (π = π
β (( deg1 βπ) β (π β
{(0gβ(Poly1βπ))})) = (π· β (π β { 0 }))) |
24 | 23 | infeq1d 9421 |
. . . . . . . . . 10
β’ (π = π
β inf((( deg1 βπ) β (π β
{(0gβ(Poly1βπ))})), β, < ) = inf((π· β (π β { 0 })), β, <
)) |
25 | 21, 24 | eqeq12d 2749 |
. . . . . . . . 9
β’ (π = π
β ((( deg1 βπ)βπ) = inf((( deg1 βπ) β (π β
{(0gβ(Poly1βπ))})), β, < ) β (π·βπ) = inf((π· β (π β { 0 })), β, <
))) |
26 | 17, 25 | riotaeqbidv 7320 |
. . . . . . . 8
β’ (π = π
β (β©π β (π β© (Monic1pβπ))(( deg1
βπ)βπ) = inf((( deg1
βπ) β (π β
{(0gβ(Poly1βπ))})), β, < )) =
(β©π β
(π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))) |
27 | 13, 11, 26 | ifbieq12d 4518 |
. . . . . . 7
β’ (π = π
β if(π =
{(0gβ(Poly1βπ))},
(0gβ(Poly1βπ)), (β©π β (π β© (Monic1pβπ))(( deg1
βπ)βπ) = inf((( deg1
βπ) β (π β
{(0gβ(Poly1βπ))})), β, < ))) = if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
)))) |
28 | 8, 27 | mpteq12dv 5200 |
. . . . . 6
β’ (π = π
β (π β
(LIdealβ(Poly1βπ)) β¦ if(π =
{(0gβ(Poly1βπ))},
(0gβ(Poly1βπ)), (β©π β (π β© (Monic1pβπ))(( deg1
βπ)βπ) = inf((( deg1
βπ) β (π β
{(0gβ(Poly1βπ))})), β, < )))) = (π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))))) |
29 | | df-ig1p 25522 |
. . . . . 6
β’
idlGen1p = (π β V β¦ (π β
(LIdealβ(Poly1βπ)) β¦ if(π =
{(0gβ(Poly1βπ))},
(0gβ(Poly1βπ)), (β©π β (π β© (Monic1pβπ))(( deg1
βπ)βπ) = inf((( deg1
βπ) β (π β
{(0gβ(Poly1βπ))})), β, < ))))) |
30 | 28, 29, 7 | mptfvmpt 7182 |
. . . . 5
β’ (π
β V β
(idlGen1pβπ
) = (π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))))) |
31 | 2, 30 | syl 17 |
. . . 4
β’ (π
β π β (idlGen1pβπ
) = (π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))))) |
32 | 1, 31 | eqtrid 2785 |
. . 3
β’ (π
β π β πΊ = (π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))))) |
33 | 32 | fveq1d 6848 |
. 2
β’ (π
β π β (πΊβπΌ) = ((π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))))βπΌ)) |
34 | | eqeq1 2737 |
. . . 4
β’ (π = πΌ β (π = { 0 } β πΌ = { 0 })) |
35 | | ineq1 4169 |
. . . . 5
β’ (π = πΌ β (π β© π) = (πΌ β© π)) |
36 | | difeq1 4079 |
. . . . . . . 8
β’ (π = πΌ β (π β { 0 }) = (πΌ β { 0 })) |
37 | 36 | imaeq2d 6017 |
. . . . . . 7
β’ (π = πΌ β (π· β (π β { 0 })) = (π· β (πΌ β { 0 }))) |
38 | 37 | infeq1d 9421 |
. . . . . 6
β’ (π = πΌ β inf((π· β (π β { 0 })), β, < ) =
inf((π· β (πΌ β { 0 })), β, <
)) |
39 | 38 | eqeq2d 2744 |
. . . . 5
β’ (π = πΌ β ((π·βπ) = inf((π· β (π β { 0 })), β, < )
β (π·βπ) = inf((π· β (πΌ β { 0 })), β, <
))) |
40 | 35, 39 | riotaeqbidv 7320 |
. . . 4
β’ (π = πΌ β (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, < )) =
(β©π β
(πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, <
))) |
41 | 34, 40 | ifbieq2d 4516 |
. . 3
β’ (π = πΌ β if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, < ))) =
if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, <
)))) |
42 | | eqid 2733 |
. . 3
β’ (π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, < )))) =
(π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
)))) |
43 | 10 | fvexi 6860 |
. . . 4
β’ 0 β
V |
44 | | riotaex 7321 |
. . . 4
β’
(β©π
β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < ))
β V |
45 | 43, 44 | ifex 4540 |
. . 3
β’ if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < )))
β V |
46 | 41, 42, 45 | fvmpt 6952 |
. 2
β’ (πΌ β π β ((π β π β¦ if(π = { 0 }, 0 , (β©π β (π β© π)(π·βπ) = inf((π· β (π β { 0 })), β, <
))))βπΌ) = if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, <
)))) |
47 | 33, 46 | sylan9eq 2793 |
1
β’ ((π
β π β§ πΌ β π) β (πΊβπΌ) = if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, <
)))) |