MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval Structured version   Visualization version   GIF version

Theorem ig1pval 24223
Description: Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pval.z 0 = (0g𝑃)
ig1pval.u 𝑈 = (LIdeal‘𝑃)
ig1pval.d 𝐷 = ( deg1𝑅)
ig1pval.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
ig1pval ((𝑅𝑉𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
Distinct variable groups:   𝑔,𝐼   𝑔,𝑀   𝑅,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑃(𝑔)   𝑈(𝑔)   𝐺(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem ig1pval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ig1pval.g . . . 4 𝐺 = (idlGen1p𝑅)
2 elex 3365 . . . . 5 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6375 . . . . . . . . . 10 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
4 ig1pval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
53, 4syl6eqr 2817 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
65fveq2d 6379 . . . . . . . 8 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
7 ig1pval.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7syl6eqr 2817 . . . . . . 7 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
95fveq2d 6379 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
10 ig1pval.z . . . . . . . . . . 11 0 = (0g𝑃)
119, 10syl6eqr 2817 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1211sneqd 4346 . . . . . . . . 9 (𝑟 = 𝑅 → {(0g‘(Poly1𝑟))} = { 0 })
1312eqeq2d 2775 . . . . . . . 8 (𝑟 = 𝑅 → (𝑖 = {(0g‘(Poly1𝑟))} ↔ 𝑖 = { 0 }))
14 fveq2 6375 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Monic1p𝑟) = (Monic1p𝑅))
15 ig1pval.m . . . . . . . . . . 11 𝑀 = (Monic1p𝑅)
1614, 15syl6eqr 2817 . . . . . . . . . 10 (𝑟 = 𝑅 → (Monic1p𝑟) = 𝑀)
1716ineq2d 3976 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑖 ∩ (Monic1p𝑟)) = (𝑖𝑀))
18 fveq2 6375 . . . . . . . . . . . 12 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
19 ig1pval.d . . . . . . . . . . . 12 𝐷 = ( deg1𝑅)
2018, 19syl6eqr 2817 . . . . . . . . . . 11 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
2120fveq1d 6377 . . . . . . . . . 10 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑔) = (𝐷𝑔))
2212difeq2d 3890 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝑖 ∖ {(0g‘(Poly1𝑟))}) = (𝑖 ∖ { 0 }))
2320, 22imaeq12d 5649 . . . . . . . . . . 11 (𝑟 = 𝑅 → (( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})) = (𝐷 “ (𝑖 ∖ { 0 })))
2423infeq1d 8590 . . . . . . . . . 10 (𝑟 = 𝑅 → inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < ) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))
2521, 24eqeq12d 2780 . . . . . . . . 9 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑔) = inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < ) ↔ (𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))
2617, 25riotaeqbidv 6806 . . . . . . . 8 (𝑟 = 𝑅 → (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))(( deg1𝑟)‘𝑔) = inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )) = (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))
2713, 11, 26ifbieq12d 4270 . . . . . . 7 (𝑟 = 𝑅 → if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))(( deg1𝑟)‘𝑔) = inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < ))) = if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))
288, 27mpteq12dv 4892 . . . . . 6 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))(( deg1𝑟)‘𝑔) = inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )))) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
29 df-ig1p 24185 . . . . . 6 idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))(( deg1𝑟)‘𝑔) = inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )))))
3028, 29, 7mptfvmpt 6683 . . . . 5 (𝑅 ∈ V → (idlGen1p𝑅) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
312, 30syl 17 . . . 4 (𝑅𝑉 → (idlGen1p𝑅) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
321, 31syl5eq 2811 . . 3 (𝑅𝑉𝐺 = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))))
3332fveq1d 6377 . 2 (𝑅𝑉 → (𝐺𝐼) = ((𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))‘𝐼))
34 eqeq1 2769 . . . 4 (𝑖 = 𝐼 → (𝑖 = { 0 } ↔ 𝐼 = { 0 }))
35 ineq1 3969 . . . . 5 (𝑖 = 𝐼 → (𝑖𝑀) = (𝐼𝑀))
36 difeq1 3883 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖 ∖ { 0 }) = (𝐼 ∖ { 0 }))
3736imaeq2d 5648 . . . . . . 7 (𝑖 = 𝐼 → (𝐷 “ (𝑖 ∖ { 0 })) = (𝐷 “ (𝐼 ∖ { 0 })))
3837infeq1d 8590 . . . . . 6 (𝑖 = 𝐼 → inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
3938eqeq2d 2775 . . . . 5 (𝑖 = 𝐼 → ((𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4035, 39riotaeqbidv 6806 . . . 4 (𝑖 = 𝐼 → (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4134, 40ifbieq2d 4268 . . 3 (𝑖 = 𝐼 → if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
42 eqid 2765 . . 3 (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < )))) = (𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))
4310fvexi 6389 . . . 4 0 ∈ V
44 riotaex 6807 . . . 4 (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ V
4543, 44ifex 4291 . . 3 if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) ∈ V
4641, 42, 45fvmpt 6471 . 2 (𝐼𝑈 → ((𝑖𝑈 ↦ if(𝑖 = { 0 }, 0 , (𝑔 ∈ (𝑖𝑀)(𝐷𝑔) = inf((𝐷 “ (𝑖 ∖ { 0 })), ℝ, < ))))‘𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
4733, 46sylan9eq 2819 1 ((𝑅𝑉𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cdif 3729  cin 3731  ifcif 4243  {csn 4334  cmpt 4888  cima 5280  cfv 6068  crio 6802  infcinf 8554  cr 10188   < clt 10328  0gc0g 16366  LIdealclidl 19444  Poly1cpl1 19820   deg1 cdg1 24105  Monic1pcmn1 24176  idlGen1pcig1p 24180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-sup 8555  df-inf 8556  df-ig1p 24185
This theorem is referenced by:  ig1pval2  24224  ig1pval3  24225
  Copyright terms: Public domain W3C validator