| Metamath
Proof Explorer Theorem List (p. 257 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | itg1addlem5 25601* | Lemma for itg1add 25602. (Contributed by Mario Carneiro, 27-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
| Theorem | itg1add 25602 | The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
| Theorem | i1fmulclem 25603 | Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (◡((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (◡𝐹 “ {(𝐵 / 𝐴)})) | ||
| Theorem | i1fmulc 25604 | A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1) | ||
| Theorem | itg1mulc 25605 | The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1‘𝐹))) | ||
| Theorem | i1fres 25606* | The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) ⇒ ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1) | ||
| Theorem | i1fpos 25607* | The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1) | ||
| Theorem | i1fposd 25608* | Deduction form of i1fposd 25608. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) | ||
| Theorem | i1fsub 25609 | The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f − 𝐺) ∈ dom ∫1) | ||
| Theorem | itg1sub 25610 | The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | ||
| Theorem | itg10a 25611* | The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 0) ⇒ ⊢ (𝜑 → (∫1‘𝐹) = 0) | ||
| Theorem | itg1ge0a 25612* | The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 ≤ (∫1‘𝐹)) | ||
| Theorem | itg1lea 25613* | Approximate version of itg1le 25614. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
| Theorem | itg1le 25614 | If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
| Theorem | itg1climres 25615* | Restricting the simple function 𝐹 to the increasing sequence 𝐴(𝑛) of measurable sets whose union is ℝ yields a sequence of simple functions whose integrals approach the integral of 𝐹. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝜑 → 𝐴:ℕ⟶dom vol) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (𝐴‘(𝑛 + 1))) & ⊢ (𝜑 → ∪ ran 𝐴 = ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑛), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫1‘𝐺)) ⇝ (∫1‘𝐹)) | ||
| Theorem | mbfi1fseqlem1 25616* | Lemma for mbfi1fseq 25622. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) ⇒ ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) | ||
| Theorem | mbfi1fseqlem2 25617* | Lemma for mbfi1fseq 25622. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) | ||
| Theorem | mbfi1fseqlem3 25618* | Lemma for mbfi1fseq 25622. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | ||
| Theorem | mbfi1fseqlem4 25619* | Lemma for mbfi1fseq 25622. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶dom ∫1) | ||
| Theorem | mbfi1fseqlem5 25620* | Lemma for mbfi1fseq 25622. Verify that 𝐺 describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (0𝑝 ∘r ≤ (𝐺‘𝐴) ∧ (𝐺‘𝐴) ∘r ≤ (𝐺‘(𝐴 + 1)))) | ||
| Theorem | mbfi1fseqlem6 25621* | Lemma for mbfi1fseq 25622. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1fseq 25622* | A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1flimlem 25623* | Lemma for mbfi1flim 25624. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1flim 25624* | Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfmullem2 25625* | Lemma for mbfmul 25627. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | mbfmullem 25626 | Lemma for mbfmul 25627. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | mbfmul 25627 | The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | itg2lcl 25628* | The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ 𝐿 ⊆ ℝ* | ||
| Theorem | itg2val 25629* | Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) | ||
| Theorem | itg2l 25630* | Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) | ||
| Theorem | itg2lr 25631* | Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) | ||
| Theorem | xrge0f 25632 | A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | ||
| Theorem | itg2cl 25633 | The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | ||
| Theorem | itg2ub 25634 | The integral of a nonnegative real function 𝐹 is an upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ≤ (∫2‘𝐹)) | ||
| Theorem | itg2leub 25635* | Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) | ||
| Theorem | itg2ge0 25636 | The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) | ||
| Theorem | itg2itg1 25637 | The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) | ||
| Theorem | itg20 25638 | The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (∫2‘(ℝ × {0})) = 0 | ||
| Theorem | itg2lecl 25639 | If an ∫2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ ∧ (∫2‘𝐹) ≤ 𝐴) → (∫2‘𝐹) ∈ ℝ) | ||
| Theorem | itg2le 25640 | If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) | ||
| Theorem | itg2const 25641* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴))) | ||
| Theorem | itg2const2 25642* | When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) | ||
| Theorem | itg2seq 25643* | Definitional property of the ∫2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 25656, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔‘𝑛))), ℝ*, < ))) | ||
| Theorem | itg2uba 25644* | Approximate version of itg2ub 25634. If 𝐹 approximately dominates 𝐺, then ∫1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐺) ≤ (∫2‘𝐹)) | ||
| Theorem | itg2lea 25645* | Approximate version of itg2le 25640. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) | ||
| Theorem | itg2eqa 25646* | Approximate equality of integrals. If 𝐹 = 𝐺 for almost all 𝑥, then ∫2𝐹 = ∫2𝐺. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘𝐹) = (∫2‘𝐺)) | ||
| Theorem | itg2mulclem 25647 | Lemma for itg2mulc 25648. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2‘𝐹))) | ||
| Theorem | itg2mulc 25648 | The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2‘𝐹))) | ||
| Theorem | itg2splitlem 25649* | Lemma for itg2split 25650. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘𝐻) ≤ ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2split 25650* | The ∫2 integral splits under an almost disjoint union. The proof avoids the use of itg2add 25660, which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘𝐻) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2monolem1 25651* | Lemma for itg2mono 25654. We show that for any constant 𝑡 less than one, 𝑡 · ∫1𝐻 is less than 𝑆, and so ∫1𝐻 ≤ 𝑆, which is one half of the equality in itg2mono 25654. Consider the sequence 𝐴(𝑛) = {𝑥 ∣ 𝑡 · 𝐻 ≤ 𝐹(𝑛)}. This is an increasing sequence of measurable sets whose union is ℝ, and so 𝐻 ↾ 𝐴(𝑛) has an integral which equals ∫1𝐻 in the limit, by itg1climres 25615. Then by taking the limit in (𝑡 · 𝐻) ↾ 𝐴(𝑛) ≤ 𝐹(𝑛), we get 𝑡 · ∫1𝐻 ≤ 𝑆 as desired. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑇 ∈ (0(,)1)) & ⊢ (𝜑 → 𝐻 ∈ dom ∫1) & ⊢ (𝜑 → 𝐻 ∘r ≤ 𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) ⇒ ⊢ (𝜑 → (𝑇 · (∫1‘𝐻)) ≤ 𝑆) | ||
| Theorem | itg2monolem2 25652* | Lemma for itg2mono 25654. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑃 ∈ dom ∫1) & ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) & ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
| Theorem | itg2monolem3 25653* | Lemma for itg2mono 25654. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑃 ∈ dom ∫1) & ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) & ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) ⇒ ⊢ (𝜑 → (∫1‘𝑃) ≤ 𝑆) | ||
| Theorem | itg2mono 25654* | The Monotone Convergence Theorem for nonnegative functions. If {(𝐹‘𝑛):𝑛 ∈ ℕ} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2‘𝐺) is the limit of the sequence {(∫2‘(𝐹‘𝑛)):𝑛 ∈ ℕ}. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ⇒ ⊢ (𝜑 → (∫2‘𝐺) = 𝑆) | ||
| Theorem | itg2i1fseqle 25655* | Subject to the conditions coming from mbfi1fseq 25622, the sequence of simple functions are all less than the target function 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) ∘r ≤ 𝐹) | ||
| Theorem | itg2i1fseq 25656* | Subject to the conditions coming from mbfi1fseq 25622, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) ⇒ ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | itg2i1fseq2 25657* | In an extension to the results of itg2i1fseq 25656, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) | ||
| Theorem | itg2i1fseq3 25658* | Special case of itg2i1fseq2 25657: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) | ||
| Theorem | itg2addlem 25659* | Lemma for itg2add 25660. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑄‘𝑛) ∧ (𝑄‘𝑛) ∘r ≤ (𝑄‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2add 25660 | The ∫2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2gt0 25661* | If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 0 < (vol‘𝐴)) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 < (∫2‘𝐹)) | ||
| Theorem | itg2cnlem1 25662* | Lemma for itgcn 25746. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) = (∫2‘𝐹)) | ||
| Theorem | itg2cnlem2 25663* | Lemma for itgcn 25746. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) | ||
| Theorem | itg2cn 25664* | A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25944 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) | ||
| Theorem | ibllem 25665 | Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) | ||
| Theorem | isibl 25666* | The predicate "𝐹 is integrable". The "integrable" predicate corresponds roughly to the range of validity of ∫𝐴𝐵 d𝑥, which is to say that the expression ∫𝐴𝐵 d𝑥 doesn't make sense unless (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ (𝜑 → dom 𝐹 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | isibl2 25667* | The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | iblmbf 25668 | An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) | ||
| Theorem | iblitg 25669* | If a function is integrable, then the ∫2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾)))) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → (∫2‘𝐺) ∈ ℝ) | ||
| Theorem | dfitg 25670* | Evaluate the class substitution in df-itg 25524. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) | ||
| Theorem | itgex 25671 | An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 ∈ V | ||
| Theorem | itgeq1f 25672 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1fOLD 25673 | Obsolete version of itgeq1f 25672 as of 1-Sep-2025. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1 25674* | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | nfitg1 25675 | Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 | ||
| Theorem | nfitg 25676* | Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∫𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 | ||
| Theorem | cbvitg 25677* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 | ||
| Theorem | cbvitgv 25678* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 | ||
| Theorem | itgeq2 25679 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgresr 25680 | The domain of an integral only matters in its intersection with ℝ. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 = ∫(𝐴 ∩ ℝ)𝐵 d𝑥 | ||
| Theorem | itg0 25681 | The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ∫∅𝐴 d𝑥 = 0 | ||
| Theorem | itgz 25682 | The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ∫𝐴0 d𝑥 = 0 | ||
| Theorem | itgeq2dv 25683* | Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgmpt 25684* | Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) d𝑦) | ||
| Theorem | itgcl 25685* | The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) | ||
| Theorem | itgvallem 25686* | Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (i↑𝐾) = 𝑇 ⇒ ⊢ (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))) | ||
| Theorem | itgvallem3 25687* | Lemma for itgposval 25697 and itgreval 25698. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 0) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) = 0) | ||
| Theorem | ibl0 25688 | The zero function is integrable on any measurable set. (Unlike iblconst 25719, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) | ||
| Theorem | iblcnlem1 25689* | Lemma for iblcnlem 25690. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) | ||
| Theorem | iblcnlem 25690* | Expand out the universal quantifier in isibl2 25667. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) | ||
| Theorem | itgcnlem 25691* | Expand out the sum in dfitg 25670. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅 − 𝑆) + (i · (𝑇 − 𝑈)))) | ||
| Theorem | iblrelem 25692* | Integrability of a real function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) | ||
| Theorem | iblposlem 25693* | Lemma for iblpos 25694. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) | ||
| Theorem | iblpos 25694* | Integrability of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ))) | ||
| Theorem | iblre 25695* | Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1))) | ||
| Theorem | itgrevallem1 25696* | Lemma for itgposval 25697 and itgreval 25698. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))) | ||
| Theorem | itgposval 25697* | The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) | ||
| Theorem | itgreval 25698* | Decompose the integral of a real function into positive and negative parts. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) | ||
| Theorem | itgrecl 25699* | Real closure of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℝ) | ||
| Theorem | iblcn 25700* | Integrability of a complex function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |