| Metamath
Proof Explorer Theorem List (p. 257 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | i1fmbf 25601 | Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) | ||
| Theorem | i1ff 25602 | A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | ||
| Theorem | i1frn 25603 | A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | ||
| Theorem | i1fima 25604 | Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
| Theorem | i1fima2 25605 | Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(◡𝐹 “ 𝐴)) ∈ ℝ) | ||
| Theorem | i1fima2sn 25606 | Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ (𝐵 ∖ {0})) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) | ||
| Theorem | i1fd 25607* | A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ran 𝐹 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑥}) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | ||
| Theorem | i1f0rn 25608 | Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) | ||
| Theorem | itg1val 25609* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
| Theorem | itg1val2 25610* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴 ∧ 𝐴 ⊆ (ℝ ∖ {0}))) → (∫1‘𝐹) = Σ𝑥 ∈ 𝐴 (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
| Theorem | itg1cl 25611 | Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | ||
| Theorem | itg1ge0 25612 | Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 0 ≤ (∫1‘𝐹)) | ||
| Theorem | i1f0 25613 | The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (ℝ × {0}) ∈ dom ∫1 | ||
| Theorem | itg10 25614 | The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (∫1‘(ℝ × {0})) = 0 | ||
| Theorem | i1f1lem 25615* | Lemma for i1f1 25616 and itg11 25617. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) | ||
| Theorem | i1f1 25616* | Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) | ||
| Theorem | itg11 25617* | The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘𝐹) = (vol‘𝐴)) | ||
| Theorem | itg1addlem1 25618* | Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
| Theorem | i1faddlem 25619* | Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
| Theorem | i1fmullem 25620* | Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
| Theorem | i1fadd 25621 | The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom ∫1) | ||
| Theorem | i1fmul 25622 | The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ dom ∫1) | ||
| Theorem | itg1addlem2 25623* | Lemma for itg1add 25627. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 25625 and itg1addlem5 25626. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (𝜑 → 𝐼:(ℝ × ℝ)⟶ℝ) | ||
| Theorem | itg1addlem3 25624* | Lemma for itg1add 25627. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | ||
| Theorem | itg1addlem4 25625* | Lemma for itg1add 25627. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof shortened by SN, 3-Oct-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) | ||
| Theorem | itg1addlem5 25626* | Lemma for itg1add 25627. (Contributed by Mario Carneiro, 27-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
| Theorem | itg1add 25627 | The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
| Theorem | i1fmulclem 25628 | Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (◡((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (◡𝐹 “ {(𝐵 / 𝐴)})) | ||
| Theorem | i1fmulc 25629 | A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1) | ||
| Theorem | itg1mulc 25630 | The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1‘𝐹))) | ||
| Theorem | i1fres 25631* | The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) ⇒ ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1) | ||
| Theorem | i1fpos 25632* | The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1) | ||
| Theorem | i1fposd 25633* | Deduction form of i1fposd 25633. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) | ||
| Theorem | i1fsub 25634 | The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f − 𝐺) ∈ dom ∫1) | ||
| Theorem | itg1sub 25635 | The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | ||
| Theorem | itg10a 25636* | The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 0) ⇒ ⊢ (𝜑 → (∫1‘𝐹) = 0) | ||
| Theorem | itg1ge0a 25637* | The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 ≤ (∫1‘𝐹)) | ||
| Theorem | itg1lea 25638* | Approximate version of itg1le 25639. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
| Theorem | itg1le 25639 | If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
| Theorem | itg1climres 25640* | Restricting the simple function 𝐹 to the increasing sequence 𝐴(𝑛) of measurable sets whose union is ℝ yields a sequence of simple functions whose integrals approach the integral of 𝐹. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝜑 → 𝐴:ℕ⟶dom vol) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (𝐴‘(𝑛 + 1))) & ⊢ (𝜑 → ∪ ran 𝐴 = ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑛), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫1‘𝐺)) ⇝ (∫1‘𝐹)) | ||
| Theorem | mbfi1fseqlem1 25641* | Lemma for mbfi1fseq 25647. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) ⇒ ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) | ||
| Theorem | mbfi1fseqlem2 25642* | Lemma for mbfi1fseq 25647. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) | ||
| Theorem | mbfi1fseqlem3 25643* | Lemma for mbfi1fseq 25647. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | ||
| Theorem | mbfi1fseqlem4 25644* | Lemma for mbfi1fseq 25647. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶dom ∫1) | ||
| Theorem | mbfi1fseqlem5 25645* | Lemma for mbfi1fseq 25647. Verify that 𝐺 describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (0𝑝 ∘r ≤ (𝐺‘𝐴) ∧ (𝐺‘𝐴) ∘r ≤ (𝐺‘(𝐴 + 1)))) | ||
| Theorem | mbfi1fseqlem6 25646* | Lemma for mbfi1fseq 25647. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1fseq 25647* | A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1flimlem 25648* | Lemma for mbfi1flim 25649. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1flim 25649* | Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfmullem2 25650* | Lemma for mbfmul 25652. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | mbfmullem 25651 | Lemma for mbfmul 25652. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | mbfmul 25652 | The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | itg2lcl 25653* | The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ 𝐿 ⊆ ℝ* | ||
| Theorem | itg2val 25654* | Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) | ||
| Theorem | itg2l 25655* | Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) | ||
| Theorem | itg2lr 25656* | Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) | ||
| Theorem | xrge0f 25657 | A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | ||
| Theorem | itg2cl 25658 | The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | ||
| Theorem | itg2ub 25659 | The integral of a nonnegative real function 𝐹 is an upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ≤ (∫2‘𝐹)) | ||
| Theorem | itg2leub 25660* | Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) | ||
| Theorem | itg2ge0 25661 | The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) | ||
| Theorem | itg2itg1 25662 | The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) | ||
| Theorem | itg20 25663 | The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (∫2‘(ℝ × {0})) = 0 | ||
| Theorem | itg2lecl 25664 | If an ∫2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ ∧ (∫2‘𝐹) ≤ 𝐴) → (∫2‘𝐹) ∈ ℝ) | ||
| Theorem | itg2le 25665 | If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) | ||
| Theorem | itg2const 25666* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴))) | ||
| Theorem | itg2const2 25667* | When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) | ||
| Theorem | itg2seq 25668* | Definitional property of the ∫2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 25681, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔‘𝑛))), ℝ*, < ))) | ||
| Theorem | itg2uba 25669* | Approximate version of itg2ub 25659. If 𝐹 approximately dominates 𝐺, then ∫1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐺) ≤ (∫2‘𝐹)) | ||
| Theorem | itg2lea 25670* | Approximate version of itg2le 25665. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) | ||
| Theorem | itg2eqa 25671* | Approximate equality of integrals. If 𝐹 = 𝐺 for almost all 𝑥, then ∫2𝐹 = ∫2𝐺. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘𝐹) = (∫2‘𝐺)) | ||
| Theorem | itg2mulclem 25672 | Lemma for itg2mulc 25673. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2‘𝐹))) | ||
| Theorem | itg2mulc 25673 | The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2‘𝐹))) | ||
| Theorem | itg2splitlem 25674* | Lemma for itg2split 25675. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘𝐻) ≤ ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2split 25675* | The ∫2 integral splits under an almost disjoint union. The proof avoids the use of itg2add 25685, which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘𝐻) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2monolem1 25676* | Lemma for itg2mono 25679. We show that for any constant 𝑡 less than one, 𝑡 · ∫1𝐻 is less than 𝑆, and so ∫1𝐻 ≤ 𝑆, which is one half of the equality in itg2mono 25679. Consider the sequence 𝐴(𝑛) = {𝑥 ∣ 𝑡 · 𝐻 ≤ 𝐹(𝑛)}. This is an increasing sequence of measurable sets whose union is ℝ, and so 𝐻 ↾ 𝐴(𝑛) has an integral which equals ∫1𝐻 in the limit, by itg1climres 25640. Then by taking the limit in (𝑡 · 𝐻) ↾ 𝐴(𝑛) ≤ 𝐹(𝑛), we get 𝑡 · ∫1𝐻 ≤ 𝑆 as desired. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑇 ∈ (0(,)1)) & ⊢ (𝜑 → 𝐻 ∈ dom ∫1) & ⊢ (𝜑 → 𝐻 ∘r ≤ 𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) ⇒ ⊢ (𝜑 → (𝑇 · (∫1‘𝐻)) ≤ 𝑆) | ||
| Theorem | itg2monolem2 25677* | Lemma for itg2mono 25679. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑃 ∈ dom ∫1) & ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) & ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
| Theorem | itg2monolem3 25678* | Lemma for itg2mono 25679. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑃 ∈ dom ∫1) & ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) & ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) ⇒ ⊢ (𝜑 → (∫1‘𝑃) ≤ 𝑆) | ||
| Theorem | itg2mono 25679* | The Monotone Convergence Theorem for nonnegative functions. If {(𝐹‘𝑛):𝑛 ∈ ℕ} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2‘𝐺) is the limit of the sequence {(∫2‘(𝐹‘𝑛)):𝑛 ∈ ℕ}. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ⇒ ⊢ (𝜑 → (∫2‘𝐺) = 𝑆) | ||
| Theorem | itg2i1fseqle 25680* | Subject to the conditions coming from mbfi1fseq 25647, the sequence of simple functions are all less than the target function 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) ∘r ≤ 𝐹) | ||
| Theorem | itg2i1fseq 25681* | Subject to the conditions coming from mbfi1fseq 25647, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) ⇒ ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | itg2i1fseq2 25682* | In an extension to the results of itg2i1fseq 25681, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) | ||
| Theorem | itg2i1fseq3 25683* | Special case of itg2i1fseq2 25682: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) | ||
| Theorem | itg2addlem 25684* | Lemma for itg2add 25685. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑄‘𝑛) ∧ (𝑄‘𝑛) ∘r ≤ (𝑄‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2add 25685 | The ∫2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2gt0 25686* | If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 0 < (vol‘𝐴)) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 < (∫2‘𝐹)) | ||
| Theorem | itg2cnlem1 25687* | Lemma for itgcn 25771. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) = (∫2‘𝐹)) | ||
| Theorem | itg2cnlem2 25688* | Lemma for itgcn 25771. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) | ||
| Theorem | itg2cn 25689* | A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25969 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) | ||
| Theorem | ibllem 25690 | Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) | ||
| Theorem | isibl 25691* | The predicate "𝐹 is integrable". The "integrable" predicate corresponds roughly to the range of validity of ∫𝐴𝐵 d𝑥, which is to say that the expression ∫𝐴𝐵 d𝑥 doesn't make sense unless (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ (𝜑 → dom 𝐹 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | isibl2 25692* | The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | iblmbf 25693 | An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) | ||
| Theorem | iblitg 25694* | If a function is integrable, then the ∫2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾)))) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → (∫2‘𝐺) ∈ ℝ) | ||
| Theorem | dfitg 25695* | Evaluate the class substitution in df-itg 25549. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) | ||
| Theorem | itgex 25696 | An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 ∈ V | ||
| Theorem | itgeq1f 25697 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1fOLD 25698 | Obsolete version of itgeq1f 25697 as of 1-Sep-2025. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1 25699* | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | nfitg1 25700 | Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |