![]() |
Metamath
Proof Explorer Theorem List (p. 257 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mbfeqalem2 25601* | Lemma for mbfeqa 25602. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by AV, 19-Aug-2022.) |
β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = π·) & β’ ((π β§ π₯ β π΅) β πΆ β β) & β’ ((π β§ π₯ β π΅) β π· β β) β β’ (π β ((π₯ β π΅ β¦ πΆ) β MblFn β (π₯ β π΅ β¦ π·) β MblFn)) | ||
Theorem | mbfeqa 25602* | If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = π·) & β’ ((π β§ π₯ β π΅) β πΆ β β) & β’ ((π β§ π₯ β π΅) β π· β β) β β’ (π β ((π₯ β π΅ β¦ πΆ) β MblFn β (π₯ β π΅ β¦ π·) β MblFn)) | ||
Theorem | mbfres 25603 | The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ ((πΉ β MblFn β§ π΄ β dom vol) β (πΉ βΎ π΄) β MblFn) | ||
Theorem | mbfres2 25604 | Measurability of a piecewise function: if πΉ is measurable on subsets π΅ and πΆ of its domain, and these pieces make up all of π΄, then πΉ is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β (πΉ βΎ π΅) β MblFn) & β’ (π β (πΉ βΎ πΆ) β MblFn) & β’ (π β (π΅ βͺ πΆ) = π΄) β β’ (π β πΉ β MblFn) | ||
Theorem | mbfss 25605* | Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β π΄ β π΅) & β’ (π β π΅ β dom vol) & β’ ((π β§ π₯ β π΄) β πΆ β π) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = 0) & β’ (π β (π₯ β π΄ β¦ πΆ) β MblFn) β β’ (π β (π₯ β π΅ β¦ πΆ) β MblFn) | ||
Theorem | mbfmulc2lem 25606 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β π΅ β β) & β’ (π β πΉ:π΄βΆβ) β β’ (π β ((π΄ Γ {π΅}) βf Β· πΉ) β MblFn) | ||
Theorem | mbfmulc2re 25607 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β π΅ β β) & β’ (π β πΉ:π΄βΆβ) β β’ (π β ((π΄ Γ {π΅}) βf Β· πΉ) β MblFn) | ||
Theorem | mbfmax 25608* | The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β πΉ β MblFn) & β’ (π β πΊ:π΄βΆβ) & β’ (π β πΊ β MblFn) & β’ π» = (π₯ β π΄ β¦ if((πΉβπ₯) β€ (πΊβπ₯), (πΊβπ₯), (πΉβπ₯))) β β’ (π β π» β MblFn) | ||
Theorem | mbfneg 25609* | The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β π) & β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) β β’ (π β (π₯ β π΄ β¦ -π΅) β MblFn) | ||
Theorem | mbfpos 25610* | The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) β β’ (π β (π₯ β π΄ β¦ if(0 β€ π΅, π΅, 0)) β MblFn) | ||
Theorem | mbfposr 25611* | Converse to mbfpos 25610. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ if(0 β€ π΅, π΅, 0)) β MblFn) & β’ (π β (π₯ β π΄ β¦ if(0 β€ -π΅, -π΅, 0)) β MblFn) β β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) | ||
Theorem | mbfposb 25612* | A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β MblFn β ((π₯ β π΄ β¦ if(0 β€ π΅, π΅, 0)) β MblFn β§ (π₯ β π΄ β¦ if(0 β€ -π΅, -π΅, 0)) β MblFn))) | ||
Theorem | ismbf3d 25613* | Simplified form of ismbfd 25598. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ ((π β§ π₯ β β) β (β‘πΉ β (π₯(,)+β)) β dom vol) β β’ (π β πΉ β MblFn) | ||
Theorem | mbfimaopnlem 25614* | Lemma for mbfimaopn 25615. (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ π½ = (TopOpenββfld) & β’ πΊ = (π₯ β β, π¦ β β β¦ (π₯ + (i Β· π¦))) & β’ π΅ = ((,) β (β Γ β)) & β’ πΎ = ran (π₯ β π΅, π¦ β π΅ β¦ (π₯ Γ π¦)) β β’ ((πΉ β MblFn β§ π΄ β π½) β (β‘πΉ β π΄) β dom vol) | ||
Theorem | mbfimaopn 25615 | The preimage of any open set (in the complex topology) under a measurable function is measurable. (See also cncombf 25617, which explains why π΄ β dom vol is too weak a condition for this theorem.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ π½ = (TopOpenββfld) β β’ ((πΉ β MblFn β§ π΄ β π½) β (β‘πΉ β π΄) β dom vol) | ||
Theorem | mbfimaopn2 25616 | The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ π½ = (TopOpenββfld) & β’ πΎ = (π½ βΎt π΅) β β’ (((πΉ β MblFn β§ πΉ:π΄βΆπ΅ β§ π΅ β β) β§ πΆ β πΎ) β (β‘πΉ β πΆ) β dom vol) | ||
Theorem | cncombf 25617 | The composition of a continuous function with a measurable function is measurable. (More generally, πΊ can be a Borel-measurable function, but notably the condition that πΊ be only measurable is too weak, the usual counterexample taking πΊ to be the Cantor function and πΉ the indicator function of the πΊ-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ ((πΉ β MblFn β§ πΉ:π΄βΆπ΅ β§ πΊ β (π΅βcnββ)) β (πΊ β πΉ) β MblFn) | ||
Theorem | cnmbf 25618 | A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 26-Mar-2015.) |
β’ ((π΄ β dom vol β§ πΉ β (π΄βcnββ)) β πΉ β MblFn) | ||
Theorem | mbfaddlem 25619 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) β β’ (π β (πΉ βf + πΊ) β MblFn) | ||
Theorem | mbfadd 25620 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) β β’ (π β (πΉ βf + πΊ) β MblFn) | ||
Theorem | mbfsub 25621 | The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) β β’ (π β (πΉ βf β πΊ) β MblFn) | ||
Theorem | mbfmulc2 25622* | A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΆ β β) & β’ ((π β§ π₯ β π΄) β π΅ β π) & β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) β β’ (π β (π₯ β π΄ β¦ (πΆ Β· π΅)) β MblFn) | ||
Theorem | mbfsup 25623* | The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, π΅(π, π₯) is a function of both π and π₯, since it is an π-indexed sequence of functions on π₯. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.) |
β’ π = (β€β₯βπ) & β’ πΊ = (π₯ β π΄ β¦ sup(ran (π β π β¦ π΅), β, < )) & β’ (π β π β β€) & β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β β) & β’ ((π β§ π₯ β π΄) β βπ¦ β β βπ β π π΅ β€ π¦) β β’ (π β πΊ β MblFn) | ||
Theorem | mbfinf 25624* | The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.) |
β’ π = (β€β₯βπ) & β’ πΊ = (π₯ β π΄ β¦ inf(ran (π β π β¦ π΅), β, < )) & β’ (π β π β β€) & β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β β) & β’ ((π β§ π₯ β π΄) β βπ¦ β β βπ β π π¦ β€ π΅) β β’ (π β πΊ β MblFn) | ||
Theorem | mbflimsup 25625* | The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ π = (β€β₯βπ) & β’ πΊ = (π₯ β π΄ β¦ (lim supβ(π β π β¦ π΅))) & β’ π» = (π β β β¦ sup((((π β π β¦ π΅) β (π[,)+β)) β© β*), β*, < )) & β’ (π β π β β€) & β’ ((π β§ π₯ β π΄) β (lim supβ(π β π β¦ π΅)) β β) & β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β β) β β’ (π β πΊ β MblFn) | ||
Theorem | mbflimlem 25626* | The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅) β πΆ) & β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β β) β β’ (π β (π₯ β π΄ β¦ πΆ) β MblFn) | ||
Theorem | mbflim 25627* | The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅) β πΆ) & β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β π) β β’ (π β (π₯ β π΄ β¦ πΆ) β MblFn) | ||
Syntax | c0p 25628 | Extend class notation to include the zero polynomial. |
class 0π | ||
Definition | df-0p 25629 | Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ 0π = (β Γ {0}) | ||
Theorem | 0pval 25630 | The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
β’ (π΄ β β β (0πβπ΄) = 0) | ||
Theorem | 0plef 25631 | Two ways to say that the function πΉ on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (πΉ:ββΆ(0[,)+β) β (πΉ:ββΆβ β§ 0π βr β€ πΉ)) | ||
Theorem | 0pledm 25632 | Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
β’ (π β π΄ β β) & β’ (π β πΉ Fn π΄) β β’ (π β (0π βr β€ πΉ β (π΄ Γ {0}) βr β€ πΉ)) | ||
Theorem | isi1f 25633 | The predicate "πΉ is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom πΉ β dom β«1 to represent this concept because β«1 is the first preparation function for our final definition β« (see df-itg 25582); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (πΉ β dom β«1 β (πΉ β MblFn β§ (πΉ:ββΆβ β§ ran πΉ β Fin β§ (volβ(β‘πΉ β (β β {0}))) β β))) | ||
Theorem | i1fmbf 25634 | Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (πΉ β dom β«1 β πΉ β MblFn) | ||
Theorem | i1ff 25635 | A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (πΉ β dom β«1 β πΉ:ββΆβ) | ||
Theorem | i1frn 25636 | A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (πΉ β dom β«1 β ran πΉ β Fin) | ||
Theorem | i1fima 25637 | Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (πΉ β dom β«1 β (β‘πΉ β π΄) β dom vol) | ||
Theorem | i1fima2 25638 | Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ Β¬ 0 β π΄) β (volβ(β‘πΉ β π΄)) β β) | ||
Theorem | i1fima2sn 25639 | Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ π΄ β (π΅ β {0})) β (volβ(β‘πΉ β {π΄})) β β) | ||
Theorem | i1fd 25640* | A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (π β πΉ:ββΆβ) & β’ (π β ran πΉ β Fin) & β’ ((π β§ π₯ β (ran πΉ β {0})) β (β‘πΉ β {π₯}) β dom vol) & β’ ((π β§ π₯ β (ran πΉ β {0})) β (volβ(β‘πΉ β {π₯})) β β) β β’ (π β πΉ β dom β«1) | ||
Theorem | i1f0rn 25641 | Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (πΉ β dom β«1 β 0 β ran πΉ) | ||
Theorem | itg1val 25642* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (πΉ β dom β«1 β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) | ||
Theorem | itg1val2 25643* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ (π΄ β Fin β§ (ran πΉ β {0}) β π΄ β§ π΄ β (β β {0}))) β (β«1βπΉ) = Ξ£π₯ β π΄ (π₯ Β· (volβ(β‘πΉ β {π₯})))) | ||
Theorem | itg1cl 25644 | Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (πΉ β dom β«1 β (β«1βπΉ) β β) | ||
Theorem | itg1ge0 25645 | Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β 0 β€ (β«1βπΉ)) | ||
Theorem | i1f0 25646 | The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (β Γ {0}) β dom β«1 | ||
Theorem | itg10 25647 | The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (β«1β(β Γ {0})) = 0 | ||
Theorem | i1f1lem 25648* | Lemma for i1f1 25649 and itg11 25650. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, 1, 0)) β β’ (πΉ:ββΆ{0, 1} β§ (π΄ β dom vol β (β‘πΉ β {1}) = π΄)) | ||
Theorem | i1f1 25649* | Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, 1, 0)) β β’ ((π΄ β dom vol β§ (volβπ΄) β β) β πΉ β dom β«1) | ||
Theorem | itg11 25650* | The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, 1, 0)) β β’ ((π΄ β dom vol β§ (volβπ΄) β β) β (β«1βπΉ) = (volβπ΄)) | ||
Theorem | itg1addlem1 25651* | Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
β’ (π β πΉ:πβΆπ) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (β‘πΉ β {π})) & β’ ((π β§ π β π΄) β π΅ β dom vol) & β’ ((π β§ π β π΄) β (volβπ΅) β β) β β’ (π β (volββͺ π β π΄ π΅) = Ξ£π β π΄ (volβπ΅)) | ||
Theorem | i1faddlem 25652* | Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ ((π β§ π΄ β β) β (β‘(πΉ βf + πΊ) β {π΄}) = βͺ π¦ β ran πΊ((β‘πΉ β {(π΄ β π¦)}) β© (β‘πΊ β {π¦}))) | ||
Theorem | i1fmullem 25653* | Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ ((π β§ π΄ β (β β {0})) β (β‘(πΉ βf Β· πΊ) β {π΄}) = βͺ π¦ β (ran πΊ β {0})((β‘πΉ β {(π΄ / π¦)}) β© (β‘πΊ β {π¦}))) | ||
Theorem | i1fadd 25654 | The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ (π β (πΉ βf + πΊ) β dom β«1) | ||
Theorem | i1fmul 25655 | The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ (π β (πΉ βf Β· πΊ) β dom β«1) | ||
Theorem | itg1addlem2 25656* | Lemma for itg1add 25661. The function πΌ represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both π and π are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 25658 and itg1addlem5 25660. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) β β’ (π β πΌ:(β Γ β)βΆβ) | ||
Theorem | itg1addlem3 25657* | Lemma for itg1add 25661. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) β β’ (((π΄ β β β§ π΅ β β) β§ Β¬ (π΄ = 0 β§ π΅ = 0)) β (π΄πΌπ΅) = (volβ((β‘πΉ β {π΄}) β© (β‘πΊ β {π΅})))) | ||
Theorem | itg1addlem4 25658* | Lemma for itg1add 25661. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof shortened by SN, 3-Oct-2024.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) & β’ π = ( + βΎ (ran πΉ Γ ran πΊ)) β β’ (π β (β«1β(πΉ βf + πΊ)) = Ξ£π¦ β ran πΉΞ£π§ β ran πΊ((π¦ + π§) Β· (π¦πΌπ§))) | ||
Theorem | itg1addlem4OLD 25659* | Obsolete version of itg1addlem4 25658 as of 6-Oct-2024. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) & β’ π = ( + βΎ (ran πΉ Γ ran πΊ)) β β’ (π β (β«1β(πΉ βf + πΊ)) = Ξ£π¦ β ran πΉΞ£π§ β ran πΊ((π¦ + π§) Β· (π¦πΌπ§))) | ||
Theorem | itg1addlem5 25660* | Lemma for itg1add 25661. (Contributed by Mario Carneiro, 27-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) & β’ π = ( + βΎ (ran πΉ Γ ran πΊ)) β β’ (π β (β«1β(πΉ βf + πΊ)) = ((β«1βπΉ) + (β«1βπΊ))) | ||
Theorem | itg1add 25661 | The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ (π β (β«1β(πΉ βf + πΊ)) = ((β«1βπΉ) + (β«1βπΊ))) | ||
Theorem | i1fmulclem 25662 | Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) β β’ (((π β§ π΄ β 0) β§ π΅ β β) β (β‘((β Γ {π΄}) βf Β· πΉ) β {π΅}) = (β‘πΉ β {(π΅ / π΄)})) | ||
Theorem | i1fmulc 25663 | A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) β β’ (π β ((β Γ {π΄}) βf Β· πΉ) β dom β«1) | ||
Theorem | itg1mulc 25664 | The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) β β’ (π β (β«1β((β Γ {π΄}) βf Β· πΉ)) = (π΄ Β· (β«1βπΉ))) | ||
Theorem | i1fres 25665* | The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside π΄.) (Contributed by Mario Carneiro, 29-Jun-2014.) |
β’ πΊ = (π₯ β β β¦ if(π₯ β π΄, (πΉβπ₯), 0)) β β’ ((πΉ β dom β«1 β§ π΄ β dom vol) β πΊ β dom β«1) | ||
Theorem | i1fpos 25666* | The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΊ = (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) β β’ (πΉ β dom β«1 β πΊ β dom β«1) | ||
Theorem | i1fposd 25667* | Deduction form of i1fposd 25667. (Contributed by Mario Carneiro, 6-Aug-2014.) |
β’ (π β (π₯ β β β¦ π΄) β dom β«1) β β’ (π β (π₯ β β β¦ if(0 β€ π΄, π΄, 0)) β dom β«1) | ||
Theorem | i1fsub 25668 | The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (πΉ βf β πΊ) β dom β«1) | ||
Theorem | itg1sub 25669 | The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf β πΊ)) = ((β«1βπΉ) β (β«1βπΊ))) | ||
Theorem | itg10a 25670* | The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β (πΉβπ₯) = 0) β β’ (π β (β«1βπΉ) = 0) | ||
Theorem | itg1ge0a 25671* | The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β 0 β€ (πΉβπ₯)) β β’ (π β 0 β€ (β«1βπΉ)) | ||
Theorem | itg1lea 25672* | Approximate version of itg1le 25673. If πΉ β€ πΊ for almost all π₯, then β«1πΉ β€ β«1πΊ. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ (π β πΊ β dom β«1) & β’ ((π β§ π₯ β (β β π΄)) β (πΉβπ₯) β€ (πΊβπ₯)) β β’ (π β (β«1βπΉ) β€ (β«1βπΊ)) | ||
Theorem | itg1le 25673 | If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β (β«1βπΉ) β€ (β«1βπΊ)) | ||
Theorem | itg1climres 25674* | Restricting the simple function πΉ to the increasing sequence π΄(π) of measurable sets whose union is β yields a sequence of simple functions whose integrals approach the integral of πΉ. (Contributed by Mario Carneiro, 15-Aug-2014.) |
β’ (π β π΄:ββΆdom vol) & β’ ((π β§ π β β) β (π΄βπ) β (π΄β(π + 1))) & β’ (π β βͺ ran π΄ = β) & β’ (π β πΉ β dom β«1) & β’ πΊ = (π₯ β β β¦ if(π₯ β (π΄βπ), (πΉβπ₯), 0)) β β’ (π β (π β β β¦ (β«1βπΊ)) β (β«1βπΉ)) | ||
Theorem | mbfi1fseqlem1 25675* | Lemma for mbfi1fseq 25681. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) β β’ (π β π½:(β Γ β)βΆ(0[,)+β)) | ||
Theorem | mbfi1fseqlem2 25676* | Lemma for mbfi1fseq 25681. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ (π΄ β β β (πΊβπ΄) = (π₯ β β β¦ if(π₯ β (-π΄[,]π΄), if((π΄π½π₯) β€ π΄, (π΄π½π₯), π΄), 0))) | ||
Theorem | mbfi1fseqlem3 25677* | Lemma for mbfi1fseq 25681. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ ((π β§ π΄ β β) β (πΊβπ΄):ββΆran (π β (0...(π΄ Β· (2βπ΄))) β¦ (π / (2βπ΄)))) | ||
Theorem | mbfi1fseqlem4 25678* | Lemma for mbfi1fseq 25681. This lemma is not as interesting as it is long - it is simply checking that πΊ is in fact a sequence of simple functions, by verifying that its range is in (0...π2βπ) / (2βπ) (which is to say, the numbers from 0 to π in increments of 1 / (2βπ)), and also that the preimage of each point π is measurable, because it is equal to (-π[,]π) β© (β‘πΉ β (π[,)π + 1 / (2βπ))) for π < π and (-π[,]π) β© (β‘πΉ β (π[,)+β)) for π = π. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ (π β πΊ:ββΆdom β«1) | ||
Theorem | mbfi1fseqlem5 25679* | Lemma for mbfi1fseq 25681. Verify that πΊ describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ ((π β§ π΄ β β) β (0π βr β€ (πΊβπ΄) β§ (πΊβπ΄) βr β€ (πΊβ(π΄ + 1)))) | ||
Theorem | mbfi1fseqlem6 25680* | Lemma for mbfi1fseq 25681. Verify that πΊ converges pointwise to πΉ, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1))) β§ βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfi1fseq 25681* | A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function πΊ and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1))) β§ βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfi1flimlem 25682* | Lemma for mbfi1flim 25683. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆβ) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfi1flim 25683* | Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:π΄βΆβ) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ₯ β π΄ (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfmullem2 25684* | Lemma for mbfmul 25686. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) & β’ (π β π:ββΆdom β«1) & β’ ((π β§ π₯ β π΄) β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) & β’ (π β π:ββΆdom β«1) & β’ ((π β§ π₯ β π΄) β (π β β β¦ ((πβπ)βπ₯)) β (πΊβπ₯)) β β’ (π β (πΉ βf Β· πΊ) β MblFn) | ||
Theorem | mbfmullem 25685 | Lemma for mbfmul 25686. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) β β’ (π β (πΉ βf Β· πΊ) β MblFn) | ||
Theorem | mbfmul 25686 | The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) β β’ (π β (πΉ βf Β· πΊ) β MblFn) | ||
Theorem | itg2lcl 25687* | The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ πΏ β β* | ||
Theorem | itg2val 25688* | Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ (πΉ:ββΆ(0[,]+β) β (β«2βπΉ) = sup(πΏ, β*, < )) | ||
Theorem | itg2l 25689* | Elementhood in the set πΏ of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ (π΄ β πΏ β βπ β dom β«1(π βr β€ πΉ β§ π΄ = (β«1βπ))) | ||
Theorem | itg2lr 25690* | Sufficient condition for elementhood in the set πΏ. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ ((πΊ β dom β«1 β§ πΊ βr β€ πΉ) β (β«1βπΊ) β πΏ) | ||
Theorem | xrge0f 25691 | A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
β’ ((πΉ:ββΆβ β§ 0π βr β€ πΉ) β πΉ:ββΆ(0[,]+β)) | ||
Theorem | itg2cl 25692 | The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (πΉ:ββΆ(0[,]+β) β (β«2βπΉ) β β*) | ||
Theorem | itg2ub 25693 | The integral of a nonnegative real function πΉ is an upper bound on the integrals of all simple functions πΊ dominated by πΉ. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ πΊ β dom β«1 β§ πΊ βr β€ πΉ) β (β«1βπΊ) β€ (β«2βπΉ)) | ||
Theorem | itg2leub 25694* | Any upper bound on the integrals of all simple functions πΊ dominated by πΉ is greater than (β«2βπΉ), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ π΄ β β*) β ((β«2βπΉ) β€ π΄ β βπ β dom β«1(π βr β€ πΉ β (β«1βπ) β€ π΄))) | ||
Theorem | itg2ge0 25695 | The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (πΉ:ββΆ(0[,]+β) β 0 β€ (β«2βπΉ)) | ||
Theorem | itg2itg1 25696 | The integral of a nonnegative simple function using β«2 is the same as its value under β«1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«2βπΉ) = (β«1βπΉ)) | ||
Theorem | itg20 25697 | The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (β«2β(β Γ {0})) = 0 | ||
Theorem | itg2lecl 25698 | If an β«2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ π΄ β β β§ (β«2βπΉ) β€ π΄) β (β«2βπΉ) β β) | ||
Theorem | itg2le 25699 | If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ πΊ:ββΆ(0[,]+β) β§ πΉ βr β€ πΊ) β (β«2βπΉ) β€ (β«2βπΊ)) | ||
Theorem | itg2const 25700* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ ((π΄ β dom vol β§ (volβπ΄) β β β§ π΅ β (0[,)+β)) β (β«2β(π₯ β β β¦ if(π₯ β π΄, π΅, 0))) = (π΅ Β· (volβπ΄))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |