Home | Metamath
Proof Explorer Theorem List (p. 257 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abelthlem3 25601* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) | ||
Theorem | abelthlem4 25602* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | ||
Theorem | abelthlem5 25603* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) | ||
Theorem | abelthlem6 25604* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) | ||
Theorem | abelthlem7a 25605* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) | ||
Theorem | abelthlem7 25606* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅) & ⊢ (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑋)) < ((𝑀 + 1) · 𝑅)) | ||
Theorem | abelthlem8 25607* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
Theorem | abelthlem9 25608* | Lemma for abelth 25609. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
Theorem | abelth 25609* | Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥↑𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 25594.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
Theorem | abelth2 25610* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) | ||
Theorem | efcn 25611 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ exp ∈ (ℂ–cn→ℂ) | ||
Theorem | sincn 25612 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
⊢ sin ∈ (ℂ–cn→ℂ) | ||
Theorem | coscn 25613 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
⊢ cos ∈ (ℂ–cn→ℂ) | ||
Theorem | reeff1olem 25614* | Lemma for reeff1o 25615. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) | ||
Theorem | reeff1o 25615 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | ||
Theorem | reefiso 25616 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
⊢ (exp ↾ ℝ) Isom < , < (ℝ, ℝ+) | ||
Theorem | efcvx 25617 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵)))) | ||
Theorem | reefgim 25618 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | ||
Theorem | pilem1 25619 | Lemma for pire 25624, pigt2lt4 25622 and sinpi 25623. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0)) | ||
Theorem | pilem2 25620 | Lemma for pire 25624, pigt2lt4 25622 and sinpi 25623. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ (2(,)4)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (sin‘𝐴) = 0) & ⊢ (𝜑 → (sin‘𝐵) = 0) ⇒ ⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) | ||
Theorem | pilem3 25621 | Lemma for pire 25624, pigt2lt4 25622 and sinpi 25623. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.) |
⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
Theorem | pigt2lt4 25622 | π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ (2 < π ∧ π < 4) | ||
Theorem | sinpi 25623 | The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘π) = 0 | ||
Theorem | pire 25624 | π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ π ∈ ℝ | ||
Theorem | picn 25625 | π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ π ∈ ℂ | ||
Theorem | pipos 25626 | π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ 0 < π | ||
Theorem | pirp 25627 | π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ π ∈ ℝ+ | ||
Theorem | negpicn 25628 | -π is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -π ∈ ℂ | ||
Theorem | sinhalfpilem 25629 | Lemma for sinhalfpi 25634 and coshalfpi 25635. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0) | ||
Theorem | halfpire 25630 | π / 2 is real. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (π / 2) ∈ ℝ | ||
Theorem | neghalfpire 25631 | -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ | ||
Theorem | neghalfpirx 25632 | -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ* | ||
Theorem | pidiv2halves 25633 | Adding π / 2 to itself gives π. See 2halves 12210. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ((π / 2) + (π / 2)) = π | ||
Theorem | sinhalfpi 25634 | The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(π / 2)) = 1 | ||
Theorem | coshalfpi 25635 | The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(π / 2)) = 0 | ||
Theorem | cosneghalfpi 25636 | The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (cos‘-(π / 2)) = 0 | ||
Theorem | efhalfpi 25637 | The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (π / 2))) = i | ||
Theorem | cospi 25638 | The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘π) = -1 | ||
Theorem | efipi 25639 | The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (exp‘(i · π)) = -1 | ||
Theorem | eulerid 25640 | Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ ((exp‘(i · π)) + 1) = 0 | ||
Theorem | sin2pi 25641 | The sine of 2π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(2 · π)) = 0 | ||
Theorem | cos2pi 25642 | The cosine of 2π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(2 · π)) = 1 | ||
Theorem | ef2pi 25643 | The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (2 · π))) = 1 | ||
Theorem | ef2kpi 25644 | If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) | ||
Theorem | efper 25645 | The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴)) | ||
Theorem | sinperlem 25646 | Lemma for sinper 25647 and cosper 25648. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) | ||
Theorem | sinper 25647 | The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴)) | ||
Theorem | cosper 25648 | The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴)) | ||
Theorem | sin2kpi 25649 | If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0) | ||
Theorem | cos2kpi 25650 | If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | ||
Theorem | sin2pim 25651 | Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴)) | ||
Theorem | cos2pim 25652 | Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinmpi 25653 | Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | ||
Theorem | cosmpi 25654 | Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) | ||
Theorem | sinppi 25655 | Sine of a number plus π. (Contributed by NM, 10-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) | ||
Theorem | cosppi 25656 | Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) | ||
Theorem | efimpi 25657 | The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴))) | ||
Theorem | sinhalfpip 25658 | The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinhalfpim 25659 | The sine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | coshalfpip 25660 | The cosine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) + 𝐴)) = -(sin‘𝐴)) | ||
Theorem | coshalfpim 25661 | The cosine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | ||
Theorem | ptolemy 25662 | Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 15890, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶)))) | ||
Theorem | sincosq1lem 25663 | Lemma for sincosq1sgn 25664. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) | ||
Theorem | sincosq1sgn 25664 | The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) | ||
Theorem | sincosq2sgn 25665 | The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq3sgn 25666 | The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq4sgn 25667 | The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴))) | ||
Theorem | coseq00topi 25668 | Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | ||
Theorem | coseq0negpitopi 25669 | Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)})) | ||
Theorem | tanrpcl 25670 | Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) ∈ ℝ+) | ||
Theorem | tangtx 25671 | The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴)) | ||
Theorem | tanabsge 25672 | The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴))) | ||
Theorem | sinq12gt0 25673 | The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴)) | ||
Theorem | sinq12ge0 25674 | The sine of a number between 0 and π is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴)) | ||
Theorem | sinq34lt0t 25675 | The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) | ||
Theorem | cosq14gt0 25676 | The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) | ||
Theorem | cosq14ge0 25677 | The cosine of a number between -π / 2 and π / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘𝐴)) | ||
Theorem | sincosq1eq 25678 | Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) | ||
Theorem | sincos4thpi 25679 | The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | ||
Theorem | tan4thpi 25680 | The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (tan‘(π / 4)) = 1 | ||
Theorem | sincos6thpi 25681 | The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.) |
⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | ||
Theorem | sincos3rdpi 25682 | The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) | ||
Theorem | pigt3 25683 | π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ 3 < π | ||
Theorem | pige3 25684 | π is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ 3 ≤ π | ||
Theorem | pige3ALT 25685 | Alternate proof of pige3 25684. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2π. We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 3 ≤ π | ||
Theorem | abssinper 25686 | The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴))) | ||
Theorem | sinkpi 25687 | The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0) | ||
Theorem | coskpi 25688 | The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) | ||
Theorem | sineq0 25689 | A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||
Theorem | coseq1 25690 | A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | ||
Theorem | cos02pilt1 25691 | Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 23-Mar-2024.) |
⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) | ||
Theorem | cosq34lt1 25692 | Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 23-Mar-2024.) |
⊢ (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1) | ||
Theorem | efeq1 25693 | A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ)) | ||
Theorem | cosne0 25694 | The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0) | ||
Theorem | cosordlem 25695 | Lemma for cosord 25696. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (cos‘𝐵) < (cos‘𝐴)) | ||
Theorem | cosord 25696 | Cosine is decreasing over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴))) | ||
Theorem | cos0pilt1 25697 | Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.) |
⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) | ||
Theorem | cos11 25698 | Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | ||
Theorem | sinord 25699 | Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) | ||
Theorem | recosf1o 25700 | The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |