![]() |
Metamath
Proof Explorer Theorem List (p. 257 of 482) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30715) |
![]() (30716-32238) |
![]() (32239-48161) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | itg1cl 25601 | Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (πΉ β dom β«1 β (β«1βπΉ) β β) | ||
Theorem | itg1ge0 25602 | Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β 0 β€ (β«1βπΉ)) | ||
Theorem | i1f0 25603 | The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (β Γ {0}) β dom β«1 | ||
Theorem | itg10 25604 | The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (β«1β(β Γ {0})) = 0 | ||
Theorem | i1f1lem 25605* | Lemma for i1f1 25606 and itg11 25607. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, 1, 0)) β β’ (πΉ:ββΆ{0, 1} β§ (π΄ β dom vol β (β‘πΉ β {1}) = π΄)) | ||
Theorem | i1f1 25606* | Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, 1, 0)) β β’ ((π΄ β dom vol β§ (volβπ΄) β β) β πΉ β dom β«1) | ||
Theorem | itg11 25607* | The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, 1, 0)) β β’ ((π΄ β dom vol β§ (volβπ΄) β β) β (β«1βπΉ) = (volβπ΄)) | ||
Theorem | itg1addlem1 25608* | Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
β’ (π β πΉ:πβΆπ) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (β‘πΉ β {π})) & β’ ((π β§ π β π΄) β π΅ β dom vol) & β’ ((π β§ π β π΄) β (volβπ΅) β β) β β’ (π β (volββͺ π β π΄ π΅) = Ξ£π β π΄ (volβπ΅)) | ||
Theorem | i1faddlem 25609* | Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ ((π β§ π΄ β β) β (β‘(πΉ βf + πΊ) β {π΄}) = βͺ π¦ β ran πΊ((β‘πΉ β {(π΄ β π¦)}) β© (β‘πΊ β {π¦}))) | ||
Theorem | i1fmullem 25610* | Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ ((π β§ π΄ β (β β {0})) β (β‘(πΉ βf Β· πΊ) β {π΄}) = βͺ π¦ β (ran πΊ β {0})((β‘πΉ β {(π΄ / π¦)}) β© (β‘πΊ β {π¦}))) | ||
Theorem | i1fadd 25611 | The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ (π β (πΉ βf + πΊ) β dom β«1) | ||
Theorem | i1fmul 25612 | The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ (π β (πΉ βf Β· πΊ) β dom β«1) | ||
Theorem | itg1addlem2 25613* | Lemma for itg1add 25618. The function πΌ represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both π and π are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 25615 and itg1addlem5 25617. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) β β’ (π β πΌ:(β Γ β)βΆβ) | ||
Theorem | itg1addlem3 25614* | Lemma for itg1add 25618. (Contributed by Mario Carneiro, 26-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) β β’ (((π΄ β β β§ π΅ β β) β§ Β¬ (π΄ = 0 β§ π΅ = 0)) β (π΄πΌπ΅) = (volβ((β‘πΉ β {π΄}) β© (β‘πΊ β {π΅})))) | ||
Theorem | itg1addlem4 25615* | Lemma for itg1add 25618. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof shortened by SN, 3-Oct-2024.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) & β’ π = ( + βΎ (ran πΉ Γ ran πΊ)) β β’ (π β (β«1β(πΉ βf + πΊ)) = Ξ£π¦ β ran πΉΞ£π§ β ran πΊ((π¦ + π§) Β· (π¦πΌπ§))) | ||
Theorem | itg1addlem4OLD 25616* | Obsolete version of itg1addlem4 25615 as of 6-Oct-2024. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) & β’ π = ( + βΎ (ran πΉ Γ ran πΊ)) β β’ (π β (β«1β(πΉ βf + πΊ)) = Ξ£π¦ β ran πΉΞ£π§ β ran πΊ((π¦ + π§) Β· (π¦πΌπ§))) | ||
Theorem | itg1addlem5 25617* | Lemma for itg1add 25618. (Contributed by Mario Carneiro, 27-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) & β’ πΌ = (π β β, π β β β¦ if((π = 0 β§ π = 0), 0, (volβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))))) & β’ π = ( + βΎ (ran πΉ Γ ran πΊ)) β β’ (π β (β«1β(πΉ βf + πΊ)) = ((β«1βπΉ) + (β«1βπΊ))) | ||
Theorem | itg1add 25618 | The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β πΊ β dom β«1) β β’ (π β (β«1β(πΉ βf + πΊ)) = ((β«1βπΉ) + (β«1βπΊ))) | ||
Theorem | i1fmulclem 25619 | Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) β β’ (((π β§ π΄ β 0) β§ π΅ β β) β (β‘((β Γ {π΄}) βf Β· πΉ) β {π΅}) = (β‘πΉ β {(π΅ / π΄)})) | ||
Theorem | i1fmulc 25620 | A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) β β’ (π β ((β Γ {π΄}) βf Β· πΉ) β dom β«1) | ||
Theorem | itg1mulc 25621 | The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) β β’ (π β (β«1β((β Γ {π΄}) βf Β· πΉ)) = (π΄ Β· (β«1βπΉ))) | ||
Theorem | i1fres 25622* | The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside π΄.) (Contributed by Mario Carneiro, 29-Jun-2014.) |
β’ πΊ = (π₯ β β β¦ if(π₯ β π΄, (πΉβπ₯), 0)) β β’ ((πΉ β dom β«1 β§ π΄ β dom vol) β πΊ β dom β«1) | ||
Theorem | i1fpos 25623* | The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΊ = (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) β β’ (πΉ β dom β«1 β πΊ β dom β«1) | ||
Theorem | i1fposd 25624* | Deduction form of i1fposd 25624. (Contributed by Mario Carneiro, 6-Aug-2014.) |
β’ (π β (π₯ β β β¦ π΄) β dom β«1) β β’ (π β (π₯ β β β¦ if(0 β€ π΄, π΄, 0)) β dom β«1) | ||
Theorem | i1fsub 25625 | The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (πΉ βf β πΊ) β dom β«1) | ||
Theorem | itg1sub 25626 | The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf β πΊ)) = ((β«1βπΉ) β (β«1βπΊ))) | ||
Theorem | itg10a 25627* | The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β (πΉβπ₯) = 0) β β’ (π β (β«1βπΉ) = 0) | ||
Theorem | itg1ge0a 25628* | The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β 0 β€ (πΉβπ₯)) β β’ (π β 0 β€ (β«1βπΉ)) | ||
Theorem | itg1lea 25629* | Approximate version of itg1le 25630. If πΉ β€ πΊ for almost all π₯, then β«1πΉ β€ β«1πΊ. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
β’ (π β πΉ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ (π β πΊ β dom β«1) & β’ ((π β§ π₯ β (β β π΄)) β (πΉβπ₯) β€ (πΊβπ₯)) β β’ (π β (β«1βπΉ) β€ (β«1βπΊ)) | ||
Theorem | itg1le 25630 | If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β (β«1βπΉ) β€ (β«1βπΊ)) | ||
Theorem | itg1climres 25631* | Restricting the simple function πΉ to the increasing sequence π΄(π) of measurable sets whose union is β yields a sequence of simple functions whose integrals approach the integral of πΉ. (Contributed by Mario Carneiro, 15-Aug-2014.) |
β’ (π β π΄:ββΆdom vol) & β’ ((π β§ π β β) β (π΄βπ) β (π΄β(π + 1))) & β’ (π β βͺ ran π΄ = β) & β’ (π β πΉ β dom β«1) & β’ πΊ = (π₯ β β β¦ if(π₯ β (π΄βπ), (πΉβπ₯), 0)) β β’ (π β (π β β β¦ (β«1βπΊ)) β (β«1βπΉ)) | ||
Theorem | mbfi1fseqlem1 25632* | Lemma for mbfi1fseq 25638. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) β β’ (π β π½:(β Γ β)βΆ(0[,)+β)) | ||
Theorem | mbfi1fseqlem2 25633* | Lemma for mbfi1fseq 25638. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ (π΄ β β β (πΊβπ΄) = (π₯ β β β¦ if(π₯ β (-π΄[,]π΄), if((π΄π½π₯) β€ π΄, (π΄π½π₯), π΄), 0))) | ||
Theorem | mbfi1fseqlem3 25634* | Lemma for mbfi1fseq 25638. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ ((π β§ π΄ β β) β (πΊβπ΄):ββΆran (π β (0...(π΄ Β· (2βπ΄))) β¦ (π / (2βπ΄)))) | ||
Theorem | mbfi1fseqlem4 25635* | Lemma for mbfi1fseq 25638. This lemma is not as interesting as it is long - it is simply checking that πΊ is in fact a sequence of simple functions, by verifying that its range is in (0...π2βπ) / (2βπ) (which is to say, the numbers from 0 to π in increments of 1 / (2βπ)), and also that the preimage of each point π is measurable, because it is equal to (-π[,]π) β© (β‘πΉ β (π[,)π + 1 / (2βπ))) for π < π and (-π[,]π) β© (β‘πΉ β (π[,)+β)) for π = π. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ (π β πΊ:ββΆdom β«1) | ||
Theorem | mbfi1fseqlem5 25636* | Lemma for mbfi1fseq 25638. Verify that πΊ describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ ((π β§ π΄ β β) β (0π βr β€ (πΊβπ΄) β§ (πΊβπ΄) βr β€ (πΊβ(π΄ + 1)))) | ||
Theorem | mbfi1fseqlem6 25637* | Lemma for mbfi1fseq 25638. Verify that πΊ converges pointwise to πΉ, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ π½ = (π β β, π¦ β β β¦ ((ββ((πΉβπ¦) Β· (2βπ))) / (2βπ))) & β’ πΊ = (π β β β¦ (π₯ β β β¦ if(π₯ β (-π[,]π), if((ππ½π₯) β€ π, (ππ½π₯), π), 0))) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1))) β§ βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfi1fseq 25638* | A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function πΊ and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1))) β§ βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfi1flimlem 25639* | Lemma for mbfi1flim 25640. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆβ) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfi1flim 25640* | Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:π΄βΆβ) β β’ (π β βπ(π:ββΆdom β«1 β§ βπ₯ β π΄ (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯))) | ||
Theorem | mbfmullem2 25641* | Lemma for mbfmul 25643. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) & β’ (π β π:ββΆdom β«1) & β’ ((π β§ π₯ β π΄) β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) & β’ (π β π:ββΆdom β«1) & β’ ((π β§ π₯ β π΄) β (π β β β¦ ((πβπ)βπ₯)) β (πΊβπ₯)) β β’ (π β (πΉ βf Β· πΊ) β MblFn) | ||
Theorem | mbfmullem 25642 | Lemma for mbfmul 25643. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) β β’ (π β (πΉ βf Β· πΊ) β MblFn) | ||
Theorem | mbfmul 25643 | The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΊ β MblFn) β β’ (π β (πΉ βf Β· πΊ) β MblFn) | ||
Theorem | itg2lcl 25644* | The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ πΏ β β* | ||
Theorem | itg2val 25645* | Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ (πΉ:ββΆ(0[,]+β) β (β«2βπΉ) = sup(πΏ, β*, < )) | ||
Theorem | itg2l 25646* | Elementhood in the set πΏ of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ (π΄ β πΏ β βπ β dom β«1(π βr β€ πΉ β§ π΄ = (β«1βπ))) | ||
Theorem | itg2lr 25647* | Sufficient condition for elementhood in the set πΏ. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} β β’ ((πΊ β dom β«1 β§ πΊ βr β€ πΉ) β (β«1βπΊ) β πΏ) | ||
Theorem | xrge0f 25648 | A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
β’ ((πΉ:ββΆβ β§ 0π βr β€ πΉ) β πΉ:ββΆ(0[,]+β)) | ||
Theorem | itg2cl 25649 | The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (πΉ:ββΆ(0[,]+β) β (β«2βπΉ) β β*) | ||
Theorem | itg2ub 25650 | The integral of a nonnegative real function πΉ is an upper bound on the integrals of all simple functions πΊ dominated by πΉ. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ πΊ β dom β«1 β§ πΊ βr β€ πΉ) β (β«1βπΊ) β€ (β«2βπΉ)) | ||
Theorem | itg2leub 25651* | Any upper bound on the integrals of all simple functions πΊ dominated by πΉ is greater than (β«2βπΉ), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ π΄ β β*) β ((β«2βπΉ) β€ π΄ β βπ β dom β«1(π βr β€ πΉ β (β«1βπ) β€ π΄))) | ||
Theorem | itg2ge0 25652 | The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (πΉ:ββΆ(0[,]+β) β 0 β€ (β«2βπΉ)) | ||
Theorem | itg2itg1 25653 | The integral of a nonnegative simple function using β«2 is the same as its value under β«1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«2βπΉ) = (β«1βπΉ)) | ||
Theorem | itg20 25654 | The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (β«2β(β Γ {0})) = 0 | ||
Theorem | itg2lecl 25655 | If an β«2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ π΄ β β β§ (β«2βπΉ) β€ π΄) β (β«2βπΉ) β β) | ||
Theorem | itg2le 25656 | If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ ((πΉ:ββΆ(0[,]+β) β§ πΊ:ββΆ(0[,]+β) β§ πΉ βr β€ πΊ) β (β«2βπΉ) β€ (β«2βπΊ)) | ||
Theorem | itg2const 25657* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ ((π΄ β dom vol β§ (volβπ΄) β β β§ π΅ β (0[,)+β)) β (β«2β(π₯ β β β¦ if(π₯ β π΄, π΅, 0))) = (π΅ Β· (volβπ΄))) | ||
Theorem | itg2const2 25658* | When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.) |
β’ ((π΄ β dom vol β§ π΅ β β+) β ((volβπ΄) β β β (β«2β(π₯ β β β¦ if(π₯ β π΄, π΅, 0))) β β)) | ||
Theorem | itg2seq 25659* | Definitional property of the β«2 integral: for any function πΉ there is a countable sequence π of simple functions less than πΉ whose integrals converge to the integral of πΉ. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 25672, but unlike that theorem this one doesn't require πΉ to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.) |
β’ (πΉ:ββΆ(0[,]+β) β βπ(π:ββΆdom β«1 β§ βπ β β (πβπ) βr β€ πΉ β§ (β«2βπΉ) = sup(ran (π β β β¦ (β«1β(πβπ))), β*, < ))) | ||
Theorem | itg2uba 25660* | Approximate version of itg2ub 25650. If πΉ approximately dominates πΊ, then β«1πΊ β€ β«2πΉ. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β πΉ:ββΆ(0[,]+β)) & β’ (π β πΊ β dom β«1) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β (πΊβπ₯) β€ (πΉβπ₯)) β β’ (π β (β«1βπΊ) β€ (β«2βπΉ)) | ||
Theorem | itg2lea 25661* | Approximate version of itg2le 25656. If πΉ β€ πΊ for almost all π₯, then β«2πΉ β€ β«2πΊ. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β πΉ:ββΆ(0[,]+β)) & β’ (π β πΊ:ββΆ(0[,]+β)) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β (πΉβπ₯) β€ (πΊβπ₯)) β β’ (π β (β«2βπΉ) β€ (β«2βπΊ)) | ||
Theorem | itg2eqa 25662* | Approximate equality of integrals. If πΉ = πΊ for almost all π₯, then β«2πΉ = β«2πΊ. (Contributed by Mario Carneiro, 12-Aug-2014.) |
β’ (π β πΉ:ββΆ(0[,]+β)) & β’ (π β πΊ:ββΆ(0[,]+β)) & β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (β β π΄)) β (πΉβπ₯) = (πΊβπ₯)) β β’ (π β (β«2βπΉ) = (β«2βπΊ)) | ||
Theorem | itg2mulclem 25663 | Lemma for itg2mulc 25664. (Contributed by Mario Carneiro, 8-Jul-2014.) |
β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β (β«2βπΉ) β β) & β’ (π β π΄ β β+) β β’ (π β (β«2β((β Γ {π΄}) βf Β· πΉ)) β€ (π΄ Β· (β«2βπΉ))) | ||
Theorem | itg2mulc 25664 | The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β (β«2βπΉ) β β) & β’ (π β π΄ β (0[,)+β)) β β’ (π β (β«2β((β Γ {π΄}) βf Β· πΉ)) = (π΄ Β· (β«2βπΉ))) | ||
Theorem | itg2splitlem 25665* | Lemma for itg2split 25666. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β π΄ β dom vol) & β’ (π β π΅ β dom vol) & β’ (π β (vol*β(π΄ β© π΅)) = 0) & β’ (π β π = (π΄ βͺ π΅)) & β’ ((π β§ π₯ β π) β πΆ β (0[,]+β)) & β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, πΆ, 0)) & β’ πΊ = (π₯ β β β¦ if(π₯ β π΅, πΆ, 0)) & β’ π» = (π₯ β β β¦ if(π₯ β π, πΆ, 0)) & β’ (π β (β«2βπΉ) β β) & β’ (π β (β«2βπΊ) β β) β β’ (π β (β«2βπ») β€ ((β«2βπΉ) + (β«2βπΊ))) | ||
Theorem | itg2split 25666* | The β«2 integral splits under an almost disjoint union. The proof avoids the use of itg2add 25676, which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β π΄ β dom vol) & β’ (π β π΅ β dom vol) & β’ (π β (vol*β(π΄ β© π΅)) = 0) & β’ (π β π = (π΄ βͺ π΅)) & β’ ((π β§ π₯ β π) β πΆ β (0[,]+β)) & β’ πΉ = (π₯ β β β¦ if(π₯ β π΄, πΆ, 0)) & β’ πΊ = (π₯ β β β¦ if(π₯ β π΅, πΆ, 0)) & β’ π» = (π₯ β β β¦ if(π₯ β π, πΆ, 0)) & β’ (π β (β«2βπΉ) β β) & β’ (π β (β«2βπΊ) β β) β β’ (π β (β«2βπ») = ((β«2βπΉ) + (β«2βπΊ))) | ||
Theorem | itg2monolem1 25667* | Lemma for itg2mono 25670. We show that for any constant π‘ less than one, π‘ Β· β«1π» is less than π, and so β«1π» β€ π, which is one half of the equality in itg2mono 25670. Consider the sequence π΄(π) = {π₯ β£ π‘ Β· π» β€ πΉ(π)}. This is an increasing sequence of measurable sets whose union is β, and so π» βΎ π΄(π) has an integral which equals β«1π» in the limit, by itg1climres 25631. Then by taking the limit in (π‘ Β· π») βΎ π΄(π) β€ πΉ(π), we get π‘ Β· β«1π» β€ π as desired. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ πΊ = (π₯ β β β¦ sup(ran (π β β β¦ ((πΉβπ)βπ₯)), β, < )) & β’ ((π β§ π β β) β (πΉβπ) β MblFn) & β’ ((π β§ π β β) β (πΉβπ):ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΉβπ) βr β€ (πΉβ(π + 1))) & β’ ((π β§ π₯ β β) β βπ¦ β β βπ β β ((πΉβπ)βπ₯) β€ π¦) & β’ π = sup(ran (π β β β¦ (β«2β(πΉβπ))), β*, < ) & β’ (π β π β (0(,)1)) & β’ (π β π» β dom β«1) & β’ (π β π» βr β€ πΊ) & β’ (π β π β β) & β’ π΄ = (π β β β¦ {π₯ β β β£ (π Β· (π»βπ₯)) β€ ((πΉβπ)βπ₯)}) β β’ (π β (π Β· (β«1βπ»)) β€ π) | ||
Theorem | itg2monolem2 25668* | Lemma for itg2mono 25670. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ πΊ = (π₯ β β β¦ sup(ran (π β β β¦ ((πΉβπ)βπ₯)), β, < )) & β’ ((π β§ π β β) β (πΉβπ) β MblFn) & β’ ((π β§ π β β) β (πΉβπ):ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΉβπ) βr β€ (πΉβ(π + 1))) & β’ ((π β§ π₯ β β) β βπ¦ β β βπ β β ((πΉβπ)βπ₯) β€ π¦) & β’ π = sup(ran (π β β β¦ (β«2β(πΉβπ))), β*, < ) & β’ (π β π β dom β«1) & β’ (π β π βr β€ πΊ) & β’ (π β Β¬ (β«1βπ) β€ π) β β’ (π β π β β) | ||
Theorem | itg2monolem3 25669* | Lemma for itg2mono 25670. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ πΊ = (π₯ β β β¦ sup(ran (π β β β¦ ((πΉβπ)βπ₯)), β, < )) & β’ ((π β§ π β β) β (πΉβπ) β MblFn) & β’ ((π β§ π β β) β (πΉβπ):ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΉβπ) βr β€ (πΉβ(π + 1))) & β’ ((π β§ π₯ β β) β βπ¦ β β βπ β β ((πΉβπ)βπ₯) β€ π¦) & β’ π = sup(ran (π β β β¦ (β«2β(πΉβπ))), β*, < ) & β’ (π β π β dom β«1) & β’ (π β π βr β€ πΊ) & β’ (π β Β¬ (β«1βπ) β€ π) β β’ (π β (β«1βπ) β€ π) | ||
Theorem | itg2mono 25670* | The Monotone Convergence Theorem for nonnegative functions. If {(πΉβπ):π β β} is a monotone increasing sequence of positive, measurable, real-valued functions, and πΊ is the pointwise limit of the sequence, then (β«2βπΊ) is the limit of the sequence {(β«2β(πΉβπ)):π β β}. (Contributed by Mario Carneiro, 16-Aug-2014.) |
β’ πΊ = (π₯ β β β¦ sup(ran (π β β β¦ ((πΉβπ)βπ₯)), β, < )) & β’ ((π β§ π β β) β (πΉβπ) β MblFn) & β’ ((π β§ π β β) β (πΉβπ):ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΉβπ) βr β€ (πΉβ(π + 1))) & β’ ((π β§ π₯ β β) β βπ¦ β β βπ β β ((πΉβπ)βπ₯) β€ π¦) & β’ π = sup(ran (π β β β¦ (β«2β(πΉβπ))), β*, < ) β β’ (π β (β«2βπΊ) = π) | ||
Theorem | itg2i1fseqle 25671* | Subject to the conditions coming from mbfi1fseq 25638, the sequence of simple functions are all less than the target function πΉ. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β π:ββΆdom β«1) & β’ (π β βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1)))) & β’ (π β βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) β β’ ((π β§ π β β) β (πβπ) βr β€ πΉ) | ||
Theorem | itg2i1fseq 25672* | Subject to the conditions coming from mbfi1fseq 25638, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β π:ββΆdom β«1) & β’ (π β βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1)))) & β’ (π β βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) & β’ π = (π β β β¦ (β«1β(πβπ))) β β’ (π β (β«2βπΉ) = sup(ran π, β*, < )) | ||
Theorem | itg2i1fseq2 25673* | In an extension to the results of itg2i1fseq 25672, if there is an upper bound on the integrals of the simple functions approaching πΉ, then β«2πΉ is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β π:ββΆdom β«1) & β’ (π β βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1)))) & β’ (π β βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) & β’ π = (π β β β¦ (β«1β(πβπ))) & β’ (π β π β β) & β’ ((π β§ π β β) β (β«1β(πβπ)) β€ π) β β’ (π β π β (β«2βπΉ)) | ||
Theorem | itg2i1fseq3 25674* | Special case of itg2i1fseq2 25673: if the integral of πΉ is a real number, then the standard limit relation holds on the integrals of simple functions approaching πΉ. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β π:ββΆdom β«1) & β’ (π β βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1)))) & β’ (π β βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) & β’ π = (π β β β¦ (β«1β(πβπ))) & β’ (π β (β«2βπΉ) β β) β β’ (π β π β (β«2βπΉ)) | ||
Theorem | itg2addlem 25675* | Lemma for itg2add 25676. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β (β«2βπΉ) β β) & β’ (π β πΊ β MblFn) & β’ (π β πΊ:ββΆ(0[,)+β)) & β’ (π β (β«2βπΊ) β β) & β’ (π β π:ββΆdom β«1) & β’ (π β βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1)))) & β’ (π β βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΉβπ₯)) & β’ (π β π:ββΆdom β«1) & β’ (π β βπ β β (0π βr β€ (πβπ) β§ (πβπ) βr β€ (πβ(π + 1)))) & β’ (π β βπ₯ β β (π β β β¦ ((πβπ)βπ₯)) β (πΊβπ₯)) β β’ (π β (β«2β(πΉ βf + πΊ)) = ((β«2βπΉ) + (β«2βπΊ))) | ||
Theorem | itg2add 25676 | The β«2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β (β«2βπΉ) β β) & β’ (π β πΊ β MblFn) & β’ (π β πΊ:ββΆ(0[,)+β)) & β’ (π β (β«2βπΊ) β β) β β’ (π β (β«2β(πΉ βf + πΊ)) = ((β«2βπΉ) + (β«2βπΊ))) | ||
Theorem | itg2gt0 25677* | If the function πΉ is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
β’ (π β π΄ β dom vol) & β’ (π β 0 < (volβπ΄)) & β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β πΉ β MblFn) & β’ ((π β§ π₯ β π΄) β 0 < (πΉβπ₯)) β β’ (π β 0 < (β«2βπΉ)) | ||
Theorem | itg2cnlem1 25678* | Lemma for itgcn 25761. (Contributed by Mario Carneiro, 30-Aug-2014.) |
β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β πΉ β MblFn) & β’ (π β (β«2βπΉ) β β) β β’ (π β sup(ran (π β β β¦ (β«2β(π₯ β β β¦ if((πΉβπ₯) β€ π, (πΉβπ₯), 0)))), β*, < ) = (β«2βπΉ)) | ||
Theorem | itg2cnlem2 25679* | Lemma for itgcn 25761. (Contributed by Mario Carneiro, 31-Aug-2014.) |
β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β πΉ β MblFn) & β’ (π β (β«2βπΉ) β β) & β’ (π β πΆ β β+) & β’ (π β π β β) & β’ (π β Β¬ (β«2β(π₯ β β β¦ if((πΉβπ₯) β€ π, (πΉβπ₯), 0))) β€ ((β«2βπΉ) β (πΆ / 2))) β β’ (π β βπ β β+ βπ’ β dom vol((volβπ’) < π β (β«2β(π₯ β β β¦ if(π₯ β π’, (πΉβπ₯), 0))) < πΆ)) | ||
Theorem | itg2cn 25680* | A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25959 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ (π β πΉ:ββΆ(0[,)+β)) & β’ (π β πΉ β MblFn) & β’ (π β (β«2βπΉ) β β) & β’ (π β πΆ β β+) β β’ (π β βπ β β+ βπ’ β dom vol((volβπ’) < π β (β«2β(π₯ β β β¦ if(π₯ β π’, (πΉβπ₯), 0))) < πΆ)) | ||
Theorem | ibllem 25681 | Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ = πΆ) β β’ (π β if((π₯ β π΄ β§ 0 β€ π΅), π΅, 0) = if((π₯ β π΄ β§ 0 β€ πΆ), πΆ, 0)) | ||
Theorem | isibl 25682* | The predicate "πΉ is integrable". The "integrable" predicate corresponds roughly to the range of validity of β«π΄π΅ dπ₯, which is to say that the expression β«π΄π΅ dπ₯ doesn't make sense unless (π₯ β π΄ β¦ π΅) β πΏ1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΊ = (π₯ β β β¦ if((π₯ β π΄ β§ 0 β€ π), π, 0))) & β’ ((π β§ π₯ β π΄) β π = (ββ(π΅ / (iβπ)))) & β’ (π β dom πΉ = π΄) & β’ ((π β§ π₯ β π΄) β (πΉβπ₯) = π΅) β β’ (π β (πΉ β πΏ1 β (πΉ β MblFn β§ βπ β (0...3)(β«2βπΊ) β β))) | ||
Theorem | isibl2 25683* | The predicate "πΉ is integrable" when πΉ is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΊ = (π₯ β β β¦ if((π₯ β π΄ β§ 0 β€ π), π, 0))) & β’ ((π β§ π₯ β π΄) β π = (ββ(π΅ / (iβπ)))) & β’ ((π β§ π₯ β π΄) β π΅ β π) β β’ (π β ((π₯ β π΄ β¦ π΅) β πΏ1 β ((π₯ β π΄ β¦ π΅) β MblFn β§ βπ β (0...3)(β«2βπΊ) β β))) | ||
Theorem | iblmbf 25684 | An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
β’ (πΉ β πΏ1 β πΉ β MblFn) | ||
Theorem | iblitg 25685* | If a function is integrable, then the β«2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ (π β πΊ = (π₯ β β β¦ if((π₯ β π΄ β§ 0 β€ π), π, 0))) & β’ ((π β§ π₯ β π΄) β π = (ββ(π΅ / (iβπΎ)))) & β’ (π β (π₯ β π΄ β¦ π΅) β πΏ1) & β’ ((π β§ π₯ β π΄) β π΅ β π) β β’ ((π β§ πΎ β β€) β (β«2βπΊ) β β) | ||
Theorem | dfitg 25686* | Evaluate the class substitution in df-itg 25539. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ π = (ββ(π΅ / (iβπ))) β β’ β«π΄π΅ dπ₯ = Ξ£π β (0...3)((iβπ) Β· (β«2β(π₯ β β β¦ if((π₯ β π΄ β§ 0 β€ π), π, 0)))) | ||
Theorem | itgex 25687 | An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ β«π΄π΅ dπ₯ β V | ||
Theorem | itgeq1f 25688 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ β²π₯π΄ & β’ β²π₯π΅ β β’ (π΄ = π΅ β β«π΄πΆ dπ₯ = β«π΅πΆ dπ₯) | ||
Theorem | itgeq1 25689* | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (π΄ = π΅ β β«π΄πΆ dπ₯ = β«π΅πΆ dπ₯) | ||
Theorem | nfitg1 25690 | Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ β²π₯β«π΄π΅ dπ₯ | ||
Theorem | nfitg 25691* | Bound-variable hypothesis builder for an integral: if π¦ is (effectively) not free in π΄ and π΅, it is not free in β«π΄π΅ dπ₯. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ β²π¦π΄ & β’ β²π¦π΅ β β’ β²π¦β«π΄π΅ dπ₯ | ||
Theorem | cbvitg 25692* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (π₯ = π¦ β π΅ = πΆ) & β’ β²π¦π΅ & β’ β²π₯πΆ β β’ β«π΄π΅ dπ₯ = β«π΄πΆ dπ¦ | ||
Theorem | cbvitgv 25693* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (π₯ = π¦ β π΅ = πΆ) β β’ β«π΄π΅ dπ₯ = β«π΄πΆ dπ¦ | ||
Theorem | itgeq2 25694 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ (βπ₯ β π΄ π΅ = πΆ β β«π΄π΅ dπ₯ = β«π΄πΆ dπ₯) | ||
Theorem | itgresr 25695 | The domain of an integral only matters in its intersection with β. (Contributed by Mario Carneiro, 29-Jun-2014.) |
β’ β«π΄π΅ dπ₯ = β«(π΄ β© β)π΅ dπ₯ | ||
Theorem | itg0 25696 | The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ β«β π΄ dπ₯ = 0 | ||
Theorem | itgz 25697 | The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
β’ β«π΄0 dπ₯ = 0 | ||
Theorem | itgeq2dv 25698* | Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ = πΆ) β β’ (π β β«π΄π΅ dπ₯ = β«π΄πΆ dπ₯) | ||
Theorem | itgmpt 25699* | Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β π) β β’ (π β β«π΄π΅ dπ₯ = β«π΄((π₯ β π΄ β¦ π΅)βπ¦) dπ¦) | ||
Theorem | itgcl 25700* | The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β π) & β’ (π β (π₯ β π΄ β¦ π΅) β πΏ1) β β’ (π β β«π΄π΅ dπ₯ β β) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |