| Metamath
Proof Explorer Theorem List (p. 257 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | i1faddlem 25601* | Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
| Theorem | i1fmullem 25602* | Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
| Theorem | i1fadd 25603 | The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom ∫1) | ||
| Theorem | i1fmul 25604 | The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ dom ∫1) | ||
| Theorem | itg1addlem2 25605* | Lemma for itg1add 25609. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 25607 and itg1addlem5 25608. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (𝜑 → 𝐼:(ℝ × ℝ)⟶ℝ) | ||
| Theorem | itg1addlem3 25606* | Lemma for itg1add 25609. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | ||
| Theorem | itg1addlem4 25607* | Lemma for itg1add 25609. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof shortened by SN, 3-Oct-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) | ||
| Theorem | itg1addlem5 25608* | Lemma for itg1add 25609. (Contributed by Mario Carneiro, 27-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
| Theorem | itg1add 25609 | The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
| Theorem | i1fmulclem 25610 | Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (◡((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (◡𝐹 “ {(𝐵 / 𝐴)})) | ||
| Theorem | i1fmulc 25611 | A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1) | ||
| Theorem | itg1mulc 25612 | The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1‘𝐹))) | ||
| Theorem | i1fres 25613* | The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) ⇒ ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1) | ||
| Theorem | i1fpos 25614* | The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1) | ||
| Theorem | i1fposd 25615* | Deduction form of i1fposd 25615. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) | ||
| Theorem | i1fsub 25616 | The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f − 𝐺) ∈ dom ∫1) | ||
| Theorem | itg1sub 25617 | The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | ||
| Theorem | itg10a 25618* | The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 0) ⇒ ⊢ (𝜑 → (∫1‘𝐹) = 0) | ||
| Theorem | itg1ge0a 25619* | The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 ≤ (∫1‘𝐹)) | ||
| Theorem | itg1lea 25620* | Approximate version of itg1le 25621. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
| Theorem | itg1le 25621 | If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
| Theorem | itg1climres 25622* | Restricting the simple function 𝐹 to the increasing sequence 𝐴(𝑛) of measurable sets whose union is ℝ yields a sequence of simple functions whose integrals approach the integral of 𝐹. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝜑 → 𝐴:ℕ⟶dom vol) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (𝐴‘(𝑛 + 1))) & ⊢ (𝜑 → ∪ ran 𝐴 = ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑛), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫1‘𝐺)) ⇝ (∫1‘𝐹)) | ||
| Theorem | mbfi1fseqlem1 25623* | Lemma for mbfi1fseq 25629. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) ⇒ ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) | ||
| Theorem | mbfi1fseqlem2 25624* | Lemma for mbfi1fseq 25629. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) | ||
| Theorem | mbfi1fseqlem3 25625* | Lemma for mbfi1fseq 25629. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | ||
| Theorem | mbfi1fseqlem4 25626* | Lemma for mbfi1fseq 25629. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶dom ∫1) | ||
| Theorem | mbfi1fseqlem5 25627* | Lemma for mbfi1fseq 25629. Verify that 𝐺 describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (0𝑝 ∘r ≤ (𝐺‘𝐴) ∧ (𝐺‘𝐴) ∘r ≤ (𝐺‘(𝐴 + 1)))) | ||
| Theorem | mbfi1fseqlem6 25628* | Lemma for mbfi1fseq 25629. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1fseq 25629* | A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1flimlem 25630* | Lemma for mbfi1flim 25631. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfi1flim 25631* | Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
| Theorem | mbfmullem2 25632* | Lemma for mbfmul 25634. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | mbfmullem 25633 | Lemma for mbfmul 25634. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | mbfmul 25634 | The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
| Theorem | itg2lcl 25635* | The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ 𝐿 ⊆ ℝ* | ||
| Theorem | itg2val 25636* | Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) | ||
| Theorem | itg2l 25637* | Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) | ||
| Theorem | itg2lr 25638* | Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) | ||
| Theorem | xrge0f 25639 | A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | ||
| Theorem | itg2cl 25640 | The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | ||
| Theorem | itg2ub 25641 | The integral of a nonnegative real function 𝐹 is an upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ≤ (∫2‘𝐹)) | ||
| Theorem | itg2leub 25642* | Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) | ||
| Theorem | itg2ge0 25643 | The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) | ||
| Theorem | itg2itg1 25644 | The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) | ||
| Theorem | itg20 25645 | The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (∫2‘(ℝ × {0})) = 0 | ||
| Theorem | itg2lecl 25646 | If an ∫2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ ∧ (∫2‘𝐹) ≤ 𝐴) → (∫2‘𝐹) ∈ ℝ) | ||
| Theorem | itg2le 25647 | If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) | ||
| Theorem | itg2const 25648* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴))) | ||
| Theorem | itg2const2 25649* | When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) | ||
| Theorem | itg2seq 25650* | Definitional property of the ∫2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 25663, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔‘𝑛))), ℝ*, < ))) | ||
| Theorem | itg2uba 25651* | Approximate version of itg2ub 25641. If 𝐹 approximately dominates 𝐺, then ∫1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐺) ≤ (∫2‘𝐹)) | ||
| Theorem | itg2lea 25652* | Approximate version of itg2le 25647. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) | ||
| Theorem | itg2eqa 25653* | Approximate equality of integrals. If 𝐹 = 𝐺 for almost all 𝑥, then ∫2𝐹 = ∫2𝐺. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘𝐹) = (∫2‘𝐺)) | ||
| Theorem | itg2mulclem 25654 | Lemma for itg2mulc 25655. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2‘𝐹))) | ||
| Theorem | itg2mulc 25655 | The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2‘𝐹))) | ||
| Theorem | itg2splitlem 25656* | Lemma for itg2split 25657. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘𝐻) ≤ ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2split 25657* | The ∫2 integral splits under an almost disjoint union. The proof avoids the use of itg2add 25667, which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) & ⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘𝐻) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2monolem1 25658* | Lemma for itg2mono 25661. We show that for any constant 𝑡 less than one, 𝑡 · ∫1𝐻 is less than 𝑆, and so ∫1𝐻 ≤ 𝑆, which is one half of the equality in itg2mono 25661. Consider the sequence 𝐴(𝑛) = {𝑥 ∣ 𝑡 · 𝐻 ≤ 𝐹(𝑛)}. This is an increasing sequence of measurable sets whose union is ℝ, and so 𝐻 ↾ 𝐴(𝑛) has an integral which equals ∫1𝐻 in the limit, by itg1climres 25622. Then by taking the limit in (𝑡 · 𝐻) ↾ 𝐴(𝑛) ≤ 𝐹(𝑛), we get 𝑡 · ∫1𝐻 ≤ 𝑆 as desired. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑇 ∈ (0(,)1)) & ⊢ (𝜑 → 𝐻 ∈ dom ∫1) & ⊢ (𝜑 → 𝐻 ∘r ≤ 𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) ⇒ ⊢ (𝜑 → (𝑇 · (∫1‘𝐻)) ≤ 𝑆) | ||
| Theorem | itg2monolem2 25659* | Lemma for itg2mono 25661. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑃 ∈ dom ∫1) & ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) & ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
| Theorem | itg2monolem3 25660* | Lemma for itg2mono 25661. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) & ⊢ (𝜑 → 𝑃 ∈ dom ∫1) & ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) & ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) ⇒ ⊢ (𝜑 → (∫1‘𝑃) ≤ 𝑆) | ||
| Theorem | itg2mono 25661* | The Monotone Convergence Theorem for nonnegative functions. If {(𝐹‘𝑛):𝑛 ∈ ℕ} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2‘𝐺) is the limit of the sequence {(∫2‘(𝐹‘𝑛)):𝑛 ∈ ℕ}. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) & ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ⇒ ⊢ (𝜑 → (∫2‘𝐺) = 𝑆) | ||
| Theorem | itg2i1fseqle 25662* | Subject to the conditions coming from mbfi1fseq 25629, the sequence of simple functions are all less than the target function 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) ∘r ≤ 𝐹) | ||
| Theorem | itg2i1fseq 25663* | Subject to the conditions coming from mbfi1fseq 25629, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) ⇒ ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | itg2i1fseq2 25664* | In an extension to the results of itg2i1fseq 25663, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) | ||
| Theorem | itg2i1fseq3 25665* | Special case of itg2i1fseq2 25664: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) | ||
| Theorem | itg2addlem 25666* | Lemma for itg2add 25667. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑄‘𝑛) ∧ (𝑄‘𝑛) ∘r ≤ (𝑄‘(𝑛 + 1)))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2add 25667 | The ∫2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2gt0 25668* | If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 0 < (vol‘𝐴)) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 < (∫2‘𝐹)) | ||
| Theorem | itg2cnlem1 25669* | Lemma for itgcn 25753. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) = (∫2‘𝐹)) | ||
| Theorem | itg2cnlem2 25670* | Lemma for itgcn 25753. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) | ||
| Theorem | itg2cn 25671* | A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25951 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) | ||
| Theorem | ibllem 25672 | Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) | ||
| Theorem | isibl 25673* | The predicate "𝐹 is integrable". The "integrable" predicate corresponds roughly to the range of validity of ∫𝐴𝐵 d𝑥, which is to say that the expression ∫𝐴𝐵 d𝑥 doesn't make sense unless (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ (𝜑 → dom 𝐹 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | isibl2 25674* | The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | iblmbf 25675 | An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) | ||
| Theorem | iblitg 25676* | If a function is integrable, then the ∫2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾)))) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → (∫2‘𝐺) ∈ ℝ) | ||
| Theorem | dfitg 25677* | Evaluate the class substitution in df-itg 25531. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) | ||
| Theorem | itgex 25678 | An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 ∈ V | ||
| Theorem | itgeq1f 25679 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1fOLD 25680 | Obsolete version of itgeq1f 25679 as of 1-Sep-2025. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1 25681* | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | nfitg1 25682 | Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 | ||
| Theorem | nfitg 25683* | Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∫𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 | ||
| Theorem | cbvitg 25684* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 | ||
| Theorem | cbvitgv 25685* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 | ||
| Theorem | itgeq2 25686 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgresr 25687 | The domain of an integral only matters in its intersection with ℝ. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 = ∫(𝐴 ∩ ℝ)𝐵 d𝑥 | ||
| Theorem | itg0 25688 | The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ∫∅𝐴 d𝑥 = 0 | ||
| Theorem | itgz 25689 | The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ∫𝐴0 d𝑥 = 0 | ||
| Theorem | itgeq2dv 25690* | Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgmpt 25691* | Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) d𝑦) | ||
| Theorem | itgcl 25692* | The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) | ||
| Theorem | itgvallem 25693* | Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (i↑𝐾) = 𝑇 ⇒ ⊢ (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))) | ||
| Theorem | itgvallem3 25694* | Lemma for itgposval 25704 and itgreval 25705. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 0) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) = 0) | ||
| Theorem | ibl0 25695 | The zero function is integrable on any measurable set. (Unlike iblconst 25726, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) | ||
| Theorem | iblcnlem1 25696* | Lemma for iblcnlem 25697. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) | ||
| Theorem | iblcnlem 25697* | Expand out the universal quantifier in isibl2 25674. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) | ||
| Theorem | itgcnlem 25698* | Expand out the sum in dfitg 25677. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅 − 𝑆) + (i · (𝑇 − 𝑈)))) | ||
| Theorem | iblrelem 25699* | Integrability of a real function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) | ||
| Theorem | iblposlem 25700* | Lemma for iblpos 25701. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |