HomeHome Metamath Proof Explorer
Theorem List (p. 257 of 480)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30438)
  Hilbert Space Explorer  Hilbert Space Explorer
(30439-31961)
  Users' Mathboxes  Users' Mathboxes
(31962-47939)
 

Theorem List for Metamath Proof Explorer - 25601-25700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremditgex 25601 A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.)
⨜[𝐴 β†’ 𝐡]𝐢 dπ‘₯ ∈ V
 
Theoremditg0 25602* Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.)
⨜[𝐴 β†’ 𝐴]𝐡 dπ‘₯ = 0
 
Theoremcbvditg 25603* Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.)
(π‘₯ = 𝑦 β†’ 𝐢 = 𝐷)    &   β„²π‘¦πΆ    &   β„²π‘₯𝐷    β‡’   β¨œ[𝐴 β†’ 𝐡]𝐢 dπ‘₯ = ⨜[𝐴 β†’ 𝐡]𝐷 d𝑦
 
Theoremcbvditgv 25604* Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.)
(π‘₯ = 𝑦 β†’ 𝐢 = 𝐷)    β‡’   β¨œ[𝐴 β†’ 𝐡]𝐢 dπ‘₯ = ⨜[𝐴 β†’ 𝐡]𝐷 d𝑦
 
Theoremditgpos 25605* Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
(πœ‘ β†’ 𝐴 ≀ 𝐡)    β‡’   (πœ‘ β†’ ⨜[𝐴 β†’ 𝐡]𝐢 dπ‘₯ = ∫(𝐴(,)𝐡)𝐢 dπ‘₯)
 
Theoremditgneg 25606* Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
(πœ‘ β†’ 𝐴 ≀ 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ ⨜[𝐡 β†’ 𝐴]𝐢 dπ‘₯ = -∫(𝐴(,)𝐡)𝐢 dπ‘₯)
 
Theoremditgcl 25607* Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
(πœ‘ β†’ 𝑋 ∈ ℝ)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ∈ (𝑋[,]π‘Œ))    &   (πœ‘ β†’ 𝐡 ∈ (𝑋[,]π‘Œ))    &   ((πœ‘ ∧ π‘₯ ∈ (𝑋(,)π‘Œ)) β†’ 𝐢 ∈ 𝑉)    &   (πœ‘ β†’ (π‘₯ ∈ (𝑋(,)π‘Œ) ↦ 𝐢) ∈ 𝐿1)    β‡’   (πœ‘ β†’ ⨜[𝐴 β†’ 𝐡]𝐢 dπ‘₯ ∈ β„‚)
 
Theoremditgswap 25608* Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
(πœ‘ β†’ 𝑋 ∈ ℝ)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ∈ (𝑋[,]π‘Œ))    &   (πœ‘ β†’ 𝐡 ∈ (𝑋[,]π‘Œ))    &   ((πœ‘ ∧ π‘₯ ∈ (𝑋(,)π‘Œ)) β†’ 𝐢 ∈ 𝑉)    &   (πœ‘ β†’ (π‘₯ ∈ (𝑋(,)π‘Œ) ↦ 𝐢) ∈ 𝐿1)    β‡’   (πœ‘ β†’ ⨜[𝐡 β†’ 𝐴]𝐢 dπ‘₯ = -⨜[𝐴 β†’ 𝐡]𝐢 dπ‘₯)
 
Theoremditgsplitlem 25609* Lemma for ditgsplit 25610. (Contributed by Mario Carneiro, 13-Aug-2014.)
(πœ‘ β†’ 𝑋 ∈ ℝ)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ∈ (𝑋[,]π‘Œ))    &   (πœ‘ β†’ 𝐡 ∈ (𝑋[,]π‘Œ))    &   (πœ‘ β†’ 𝐢 ∈ (𝑋[,]π‘Œ))    &   ((πœ‘ ∧ π‘₯ ∈ (𝑋(,)π‘Œ)) β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ (π‘₯ ∈ (𝑋(,)π‘Œ) ↦ 𝐷) ∈ 𝐿1)    &   ((πœ“ ∧ πœƒ) ↔ (𝐴 ≀ 𝐡 ∧ 𝐡 ≀ 𝐢))    β‡’   (((πœ‘ ∧ πœ“) ∧ πœƒ) β†’ ⨜[𝐴 β†’ 𝐢]𝐷 dπ‘₯ = (⨜[𝐴 β†’ 𝐡]𝐷 dπ‘₯ + ⨜[𝐡 β†’ 𝐢]𝐷 dπ‘₯))
 
Theoremditgsplit 25610* This theorem is the raison d'Γͺtre for the directed integral, because unlike itgspliticc 25586, there is no constraint on the ordering of the points 𝐴, 𝐡, 𝐢 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
(πœ‘ β†’ 𝑋 ∈ ℝ)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ∈ (𝑋[,]π‘Œ))    &   (πœ‘ β†’ 𝐡 ∈ (𝑋[,]π‘Œ))    &   (πœ‘ β†’ 𝐢 ∈ (𝑋[,]π‘Œ))    &   ((πœ‘ ∧ π‘₯ ∈ (𝑋(,)π‘Œ)) β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ (π‘₯ ∈ (𝑋(,)π‘Œ) ↦ 𝐷) ∈ 𝐿1)    β‡’   (πœ‘ β†’ ⨜[𝐴 β†’ 𝐢]𝐷 dπ‘₯ = (⨜[𝐴 β†’ 𝐡]𝐷 dπ‘₯ + ⨜[𝐡 β†’ 𝐢]𝐷 dπ‘₯))
 
13.3  Derivatives
 
13.3.1  Real and complex differentiation
 
13.3.1.1  Derivatives of functions of one complex or real variable
 
Syntaxclimc 25611 The limit operator.
class limβ„‚
 
Syntaxcdv 25612 The derivative operator.
class D
 
Syntaxcdvn 25613 The 𝑛-th derivative operator.
class D𝑛
 
Syntaxccpn 25614 The set of 𝑛-times continuously differentiable functions.
class 𝓑C𝑛
 
Definitiondf-limc 25615* Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.)
limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∣ [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)})
 
Definitiondf-dv 25616* Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of β„‚ and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = β„‚ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.)
D = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ βˆͺ π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)))
 
Definitiondf-dvn 25617* Define the 𝑛-th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015.)
D𝑛 = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ seq0(((π‘₯ ∈ V ↦ (𝑠 D π‘₯)) ∘ 1st ), (β„•0 Γ— {𝑓})))
 
Definitiondf-cpn 25618* Define the set of 𝑛-times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014.)
𝓑C𝑛 = (𝑠 ∈ 𝒫 β„‚ ↦ (π‘₯ ∈ β„•0 ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)β€˜π‘₯) ∈ (dom 𝑓–cnβ†’β„‚)}))
 
Theoremreldv 25619 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.)
Rel (𝑆 D 𝐹)
 
Theoremlimcvallem 25620* Lemma for ellimc 25622. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐽 = (𝐾 β†Ύt (𝐴 βˆͺ {𝐡}))    &   πΎ = (TopOpenβ€˜β„‚fld)    &   πΊ = (𝑧 ∈ (𝐴 βˆͺ {𝐡}) ↦ if(𝑧 = 𝐡, 𝐢, (πΉβ€˜π‘§)))    β‡’   ((𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐺 ∈ ((𝐽 CnP 𝐾)β€˜π΅) β†’ 𝐢 ∈ β„‚))
 
Theoremlimcfval 25621* Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐽 = (𝐾 β†Ύt (𝐴 βˆͺ {𝐡}))    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   ((𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐹 limβ„‚ 𝐡) = {𝑦 ∣ (𝑧 ∈ (𝐴 βˆͺ {𝐡}) ↦ if(𝑧 = 𝐡, 𝑦, (πΉβ€˜π‘§))) ∈ ((𝐽 CnP 𝐾)β€˜π΅)} ∧ (𝐹 limβ„‚ 𝐡) βŠ† β„‚))
 
Theoremellimc 25622* Value of the limit predicate. 𝐢 is the limit of the function 𝐹 at 𝐡 if the function 𝐺, formed by adding 𝐡 to the domain of 𝐹 and setting it to 𝐢, is continuous at 𝐡. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐽 = (𝐾 β†Ύt (𝐴 βˆͺ {𝐡}))    &   πΎ = (TopOpenβ€˜β„‚fld)    &   πΊ = (𝑧 ∈ (𝐴 βˆͺ {𝐡}) ↦ if(𝑧 = 𝐡, 𝐢, (πΉβ€˜π‘§)))    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐢 ∈ (𝐹 limβ„‚ 𝐡) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)β€˜π΅)))
 
Theoremlimcrcl 25623 Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐢 ∈ (𝐹 limβ„‚ 𝐡) β†’ (𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚ ∧ 𝐡 ∈ β„‚))
 
Theoremlimccl 25624 Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝐹 limβ„‚ 𝐡) βŠ† β„‚
 
Theoremlimcdif 25625 It suffices to consider functions which are not defined at 𝐡 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐡 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    β‡’   (πœ‘ β†’ (𝐹 limβ„‚ 𝐡) = ((𝐹 β†Ύ (𝐴 βˆ– {𝐡})) limβ„‚ 𝐡))
 
Theoremellimc2 25626* Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ (𝐢 ∈ (𝐹 limβ„‚ 𝐡) ↔ (𝐢 ∈ β„‚ ∧ βˆ€π‘’ ∈ 𝐾 (𝐢 ∈ 𝑒 β†’ βˆƒπ‘€ ∈ 𝐾 (𝐡 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (𝐴 βˆ– {𝐡}))) βŠ† 𝑒)))))
 
Theoremlimcnlp 25627 If 𝐡 is not a limit point of the domain of the function 𝐹, then every point is a limit of 𝐹 at 𝐡. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   πΎ = (TopOpenβ€˜β„‚fld)    &   (πœ‘ β†’ Β¬ 𝐡 ∈ ((limPtβ€˜πΎ)β€˜π΄))    β‡’   (πœ‘ β†’ (𝐹 limβ„‚ 𝐡) = β„‚)
 
Theoremellimc3 25628* Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐢 ∈ (𝐹 limβ„‚ 𝐡) ↔ (𝐢 ∈ β„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ 𝐴 ((𝑧 β‰  𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑦) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝐢)) < π‘₯))))
 
Theoremlimcflflem 25629 Lemma for limcflf 25630. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ ((limPtβ€˜πΎ)β€˜π΄))    &   πΎ = (TopOpenβ€˜β„‚fld)    &   πΆ = (𝐴 βˆ– {𝐡})    &   πΏ = (((neiβ€˜πΎ)β€˜{𝐡}) β†Ύt 𝐢)    β‡’   (πœ‘ β†’ 𝐿 ∈ (Filβ€˜πΆ))
 
Theoremlimcflf 25630 The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐡 restricted to 𝐴 βˆ– {𝐡}, to the topology of the complex numbers. (If 𝐡 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ ((limPtβ€˜πΎ)β€˜π΄))    &   πΎ = (TopOpenβ€˜β„‚fld)    &   πΆ = (𝐴 βˆ– {𝐡})    &   πΏ = (((neiβ€˜πΎ)β€˜{𝐡}) β†Ύt 𝐢)    β‡’   (πœ‘ β†’ (𝐹 limβ„‚ 𝐡) = ((𝐾 fLimf 𝐿)β€˜(𝐹 β†Ύ 𝐢)))
 
Theoremlimcmo 25631* If 𝐡 is a limit point of the domain of the function 𝐹, then there is at most one limit value of 𝐹 at 𝐡. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ ((limPtβ€˜πΎ)β€˜π΄))    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ βˆƒ*π‘₯ π‘₯ ∈ (𝐹 limβ„‚ 𝐡))
 
Theoremlimcmpt 25632* Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ 𝑧 ∈ 𝐴) β†’ 𝐷 ∈ β„‚)    &   π½ = (𝐾 β†Ύt (𝐴 βˆͺ {𝐡}))    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ (𝐢 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limβ„‚ 𝐡) ↔ (𝑧 ∈ (𝐴 βˆͺ {𝐡}) ↦ if(𝑧 = 𝐡, 𝐢, 𝐷)) ∈ ((𝐽 CnP 𝐾)β€˜π΅)))
 
Theoremlimcmpt2 25633* Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
(πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    &   ((πœ‘ ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 β‰  𝐡)) β†’ 𝐷 ∈ β„‚)    &   π½ = (𝐾 β†Ύt 𝐴)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ (𝐢 ∈ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ 𝐷) limβ„‚ 𝐡) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐡, 𝐢, 𝐷)) ∈ ((𝐽 CnP 𝐾)β€˜π΅)))
 
Theoremlimcresi 25634 Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐹 limβ„‚ 𝐡) βŠ† ((𝐹 β†Ύ 𝐢) limβ„‚ 𝐡)
 
Theoremlimcres 25635 If 𝐡 is an interior point of 𝐢 βˆͺ {𝐡} relative to the domain 𝐴, then a limit point of 𝐹 β†Ύ 𝐢 extends to a limit of 𝐹. (Contributed by Mario Carneiro, 27-Dec-2016.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐢 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐴 βŠ† β„‚)    &   πΎ = (TopOpenβ€˜β„‚fld)    &   π½ = (𝐾 β†Ύt (𝐴 βˆͺ {𝐡}))    &   (πœ‘ β†’ 𝐡 ∈ ((intβ€˜π½)β€˜(𝐢 βˆͺ {𝐡})))    β‡’   (πœ‘ β†’ ((𝐹 β†Ύ 𝐢) limβ„‚ 𝐡) = (𝐹 limβ„‚ 𝐡))
 
Theoremcnplimc 25636 A function is continuous at 𝐡 iff its limit at 𝐡 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
𝐾 = (TopOpenβ€˜β„‚fld)    &   π½ = (𝐾 β†Ύt 𝐴)    β‡’   ((𝐴 βŠ† β„‚ ∧ 𝐡 ∈ 𝐴) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅) ↔ (𝐹:π΄βŸΆβ„‚ ∧ (πΉβ€˜π΅) ∈ (𝐹 limβ„‚ 𝐡))))
 
Theoremcnlimc 25637* 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐴 βŠ† β„‚ β†’ (𝐹 ∈ (𝐴–cnβ†’β„‚) ↔ (𝐹:π΄βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ 𝐴 (πΉβ€˜π‘₯) ∈ (𝐹 limβ„‚ π‘₯))))
 
Theoremcnlimci 25638 If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(πœ‘ β†’ 𝐹 ∈ (𝐴–cn→𝐷))    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    β‡’   (πœ‘ β†’ (πΉβ€˜π΅) ∈ (𝐹 limβ„‚ 𝐡))
 
Theoremcnmptlimc 25639* If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷))    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    &   (π‘₯ = 𝐡 β†’ 𝑋 = π‘Œ)    β‡’   (πœ‘ β†’ π‘Œ ∈ ((π‘₯ ∈ 𝐴 ↦ 𝑋) limβ„‚ 𝐡))
 
Theoremlimccnp 25640 If the limit of 𝐹 at 𝐡 is 𝐢 and 𝐺 is continuous at 𝐢, then the limit of 𝐺 ∘ 𝐹 at 𝐡 is 𝐺(𝐢). (Contributed by Mario Carneiro, 28-Dec-2016.)
(πœ‘ β†’ 𝐹:𝐴⟢𝐷)    &   (πœ‘ β†’ 𝐷 βŠ† β„‚)    &   πΎ = (TopOpenβ€˜β„‚fld)    &   π½ = (𝐾 β†Ύt 𝐷)    &   (πœ‘ β†’ 𝐢 ∈ (𝐹 limβ„‚ 𝐡))    &   (πœ‘ β†’ 𝐺 ∈ ((𝐽 CnP 𝐾)β€˜πΆ))    β‡’   (πœ‘ β†’ (πΊβ€˜πΆ) ∈ ((𝐺 ∘ 𝐹) limβ„‚ 𝐡))
 
Theoremlimccnp2 25641* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.)
((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝑅 ∈ 𝑋)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝑆 ∈ π‘Œ)    &   (πœ‘ β†’ 𝑋 βŠ† β„‚)    &   (πœ‘ β†’ π‘Œ βŠ† β„‚)    &   πΎ = (TopOpenβ€˜β„‚fld)    &   π½ = ((𝐾 Γ—t 𝐾) β†Ύt (𝑋 Γ— π‘Œ))    &   (πœ‘ β†’ 𝐢 ∈ ((π‘₯ ∈ 𝐴 ↦ 𝑅) limβ„‚ 𝐡))    &   (πœ‘ β†’ 𝐷 ∈ ((π‘₯ ∈ 𝐴 ↦ 𝑆) limβ„‚ 𝐡))    &   (πœ‘ β†’ 𝐻 ∈ ((𝐽 CnP 𝐾)β€˜βŸ¨πΆ, 𝐷⟩))    β‡’   (πœ‘ β†’ (𝐢𝐻𝐷) ∈ ((π‘₯ ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limβ„‚ 𝐡))
 
Theoremlimcco 25642* Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.)
((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑅 β‰  𝐢)) β†’ 𝑅 ∈ 𝐡)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ 𝑆 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ ((π‘₯ ∈ 𝐴 ↦ 𝑅) limβ„‚ 𝑋))    &   (πœ‘ β†’ 𝐷 ∈ ((𝑦 ∈ 𝐡 ↦ 𝑆) limβ„‚ 𝐢))    &   (𝑦 = 𝑅 β†’ 𝑆 = 𝑇)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑅 = 𝐢)) β†’ 𝑇 = 𝐷)    β‡’   (πœ‘ β†’ 𝐷 ∈ ((π‘₯ ∈ 𝐴 ↦ 𝑇) limβ„‚ 𝑋))
 
Theoremlimciun 25643* A point is a limit of 𝐹 on the finite union βˆͺ π‘₯ ∈ 𝐴𝐡(π‘₯) iff it is the limit of the restriction of 𝐹 to each 𝐡(π‘₯). (Contributed by Mario Carneiro, 30-Dec-2016.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:βˆͺ π‘₯ ∈ 𝐴 π΅βŸΆβ„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐹 limβ„‚ 𝐢) = (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)))
 
Theoremlimcun 25644 A point is a limit of 𝐹 on 𝐴 βˆͺ 𝐡 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐡. (Contributed by Mario Carneiro, 30-Dec-2016.)
(πœ‘ β†’ 𝐴 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:(𝐴 βˆͺ 𝐡)βŸΆβ„‚)    β‡’   (πœ‘ β†’ (𝐹 limβ„‚ 𝐢) = (((𝐹 β†Ύ 𝐴) limβ„‚ 𝐢) ∩ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)))
 
Theoremdvlem 25645 Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝐹:π·βŸΆβ„‚)    &   (πœ‘ β†’ 𝐷 βŠ† β„‚)    &   (πœ‘ β†’ 𝐡 ∈ 𝐷)    β‡’   ((πœ‘ ∧ 𝐴 ∈ (𝐷 βˆ– {𝐡})) β†’ (((πΉβ€˜π΄) βˆ’ (πΉβ€˜π΅)) / (𝐴 βˆ’ 𝐡)) ∈ β„‚)
 
Theoremdvfval 25646* Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.)
𝑇 = (𝐾 β†Ύt 𝑆)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ ((𝑆 D 𝐹) = βˆͺ π‘₯ ∈ ((intβ€˜π‘‡)β€˜π΄)({π‘₯} Γ— ((𝑧 ∈ (𝐴 βˆ– {π‘₯}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)) ∧ (𝑆 D 𝐹) βŠ† (((intβ€˜π‘‡)β€˜π΄) Γ— β„‚)))
 
Theoremeldv 25647* The differentiable predicate. A function 𝐹 is differentiable at 𝐡 with derivative 𝐢 iff 𝐹 is defined in a neighborhood of 𝐡 and the difference quotient has limit 𝐢 at 𝐡. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.)
𝑇 = (𝐾 β†Ύt 𝑆)    &   πΎ = (TopOpenβ€˜β„‚fld)    &   πΊ = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)))    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑆)    β‡’   (πœ‘ β†’ (𝐡(𝑆 D 𝐹)𝐢 ↔ (𝐡 ∈ ((intβ€˜π‘‡)β€˜π΄) ∧ 𝐢 ∈ (𝐺 limβ„‚ 𝐡))))
 
Theoremdvcl 25648 The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑆)    β‡’   ((πœ‘ ∧ 𝐡(𝑆 D 𝐹)𝐢) β†’ 𝐢 ∈ β„‚)
 
Theoremdvbssntr 25649 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑆)    &   π½ = (𝐾 β†Ύt 𝑆)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ dom (𝑆 D 𝐹) βŠ† ((intβ€˜π½)β€˜π΄))
 
Theoremdvbss 25650 The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑆)    β‡’   (πœ‘ β†’ dom (𝑆 D 𝐹) βŠ† 𝐴)
 
Theoremdvbsss 25651 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.)
dom (𝑆 D 𝐹) βŠ† 𝑆
 
Theoremperfdvf 25652 The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐾 = (TopOpenβ€˜β„‚fld)    β‡’   ((𝐾 β†Ύt 𝑆) ∈ Perf β†’ (𝑆 D 𝐹):dom (𝑆 D 𝐹)βŸΆβ„‚)
 
Theoremrecnprss 25653 Both ℝ and β„‚ are subsets of β„‚. (Contributed by Mario Carneiro, 10-Feb-2015.)
(𝑆 ∈ {ℝ, β„‚} β†’ 𝑆 βŠ† β„‚)
 
Theoremrecnperf 25654 Both ℝ and β„‚ are perfect subsets of β„‚. (Contributed by Mario Carneiro, 28-Dec-2016.)
𝐾 = (TopOpenβ€˜β„‚fld)    β‡’   (𝑆 ∈ {ℝ, β„‚} β†’ (𝐾 β†Ύt 𝑆) ∈ Perf)
 
Theoremdvfg 25655 Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and β„‚. (Contributed by Mario Carneiro, 9-Feb-2015.)
(𝑆 ∈ {ℝ, β„‚} β†’ (𝑆 D 𝐹):dom (𝑆 D 𝐹)βŸΆβ„‚)
 
Theoremdvf 25656 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(ℝ D 𝐹):dom (ℝ D 𝐹)βŸΆβ„‚
 
Theoremdvfcn 25657 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.)
(β„‚ D 𝐹):dom (β„‚ D 𝐹)βŸΆβ„‚
 
Theoremdvreslem 25658* Lemma for dvres 25660. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022.)
𝐾 = (TopOpenβ€˜β„‚fld)    &   π‘‡ = (𝐾 β†Ύt 𝑆)    &   πΊ = (𝑧 ∈ (𝐴 βˆ– {π‘₯}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π‘₯)) / (𝑧 βˆ’ π‘₯)))    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐡 βŠ† 𝑆)    &   (πœ‘ β†’ 𝑦 ∈ β„‚)    β‡’   (πœ‘ β†’ (π‘₯(𝑆 D (𝐹 β†Ύ 𝐡))𝑦 ↔ (π‘₯ ∈ ((intβ€˜π‘‡)β€˜π΅) ∧ π‘₯(𝑆 D 𝐹)𝑦)))
 
Theoremdvres2lem 25659* Lemma for dvres2 25661. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
𝐾 = (TopOpenβ€˜β„‚fld)    &   π‘‡ = (𝐾 β†Ύt 𝑆)    &   πΊ = (𝑧 ∈ (𝐴 βˆ– {π‘₯}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π‘₯)) / (𝑧 βˆ’ π‘₯)))    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐡 βŠ† 𝑆)    &   (πœ‘ β†’ 𝑦 ∈ β„‚)    &   (πœ‘ β†’ π‘₯(𝑆 D 𝐹)𝑦)    &   (πœ‘ β†’ π‘₯ ∈ 𝐡)    β‡’   (πœ‘ β†’ π‘₯(𝐡 D (𝐹 β†Ύ 𝐡))𝑦)
 
Theoremdvres 25660 Restriction of a derivative. Note that our definition of derivative df-dv 25616 would still make sense if we demanded that π‘₯ be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point π‘₯ when restricted to different subsets containing π‘₯; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
𝐾 = (TopOpenβ€˜β„‚fld)    &   π‘‡ = (𝐾 β†Ύt 𝑆)    β‡’   (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐴 βŠ† 𝑆 ∧ 𝐡 βŠ† 𝑆)) β†’ (𝑆 D (𝐹 β†Ύ 𝐡)) = ((𝑆 D 𝐹) β†Ύ ((intβ€˜π‘‡)β€˜π΅)))
 
Theoremdvres2 25661 Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25660, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like β„œ(π‘₯) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.)
(((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐴 βŠ† 𝑆 ∧ 𝐡 βŠ† 𝑆)) β†’ ((𝑆 D 𝐹) β†Ύ 𝐡) βŠ† (𝐡 D (𝐹 β†Ύ 𝐡)))
 
Theoremdvres3 25662 Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015.)
(((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐴 βŠ† β„‚ ∧ 𝑆 βŠ† dom (β„‚ D 𝐹))) β†’ (𝑆 D (𝐹 β†Ύ 𝑆)) = ((β„‚ D 𝐹) β†Ύ 𝑆))
 
Theoremdvres3a 25663 Restriction of a complex differentiable function to the reals. This version of dvres3 25662 assumes that 𝐹 is differentiable on its domain, but does not require 𝐹 to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015.)
𝐽 = (TopOpenβ€˜β„‚fld)    β‡’   (((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐴 ∈ 𝐽 ∧ dom (β„‚ D 𝐹) = 𝐴)) β†’ (𝑆 D (𝐹 β†Ύ 𝑆)) = ((β„‚ D 𝐹) β†Ύ 𝑆))
 
Theoremdvidlem 25664* Lemma for dvid 25667 and dvconst 25666. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝐹:β„‚βŸΆβ„‚)    &   ((πœ‘ ∧ (π‘₯ ∈ β„‚ ∧ 𝑧 ∈ β„‚ ∧ 𝑧 β‰  π‘₯)) β†’ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π‘₯)) / (𝑧 βˆ’ π‘₯)) = 𝐡)    &   π΅ ∈ β„‚    β‡’   (πœ‘ β†’ (β„‚ D 𝐹) = (β„‚ Γ— {𝐡}))
 
Theoremdvmptresicc 25665* Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐹 = (π‘₯ ∈ β„‚ ↦ 𝐴)    &   ((πœ‘ ∧ π‘₯ ∈ β„‚) β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ (β„‚ D 𝐹) = (π‘₯ ∈ β„‚ ↦ 𝐡))    &   ((πœ‘ ∧ π‘₯ ∈ β„‚) β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    β‡’   (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐢[,]𝐷) ↦ 𝐴)) = (π‘₯ ∈ (𝐢(,)𝐷) ↦ 𝐡))
 
Theoremdvconst 25666 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(𝐴 ∈ β„‚ β†’ (β„‚ D (β„‚ Γ— {𝐴})) = (β„‚ Γ— {0}))
 
Theoremdvid 25667 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(β„‚ D ( I β†Ύ β„‚)) = (β„‚ Γ— {1})
 
Theoremdvcnp 25668* The difference quotient is continuous at 𝐡 when the original function is differentiable at 𝐡. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
𝐽 = (𝐾 β†Ύt 𝐴)    &   πΎ = (TopOpenβ€˜β„‚fld)    &   πΊ = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐡, ((𝑆 D 𝐹)β€˜π΅), (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡))))    β‡’   (((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡 ∈ dom (𝑆 D 𝐹)) β†’ 𝐺 ∈ ((𝐽 CnP 𝐾)β€˜π΅))
 
Theoremdvcnp2 25669 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11192. (Revised by GG, 16-Mar-2025.)
𝐽 = (𝐾 β†Ύt 𝐴)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡 ∈ dom (𝑆 D 𝐹)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅))
 
Theoremdvcnp2OLD 25670 Obsolete version of dvcnp2 25669 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐽 = (𝐾 β†Ύt 𝐴)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡 ∈ dom (𝑆 D 𝐹)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅))
 
Theoremdvcn 25671 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
(((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) β†’ 𝐹 ∈ (𝐴–cnβ†’β„‚))
 
Theoremdvnfval 25672* Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
𝐺 = (π‘₯ ∈ V ↦ (𝑆 D π‘₯))    β‡’   ((𝑆 βŠ† β„‚ ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)) β†’ (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (β„•0 Γ— {𝐹})))
 
Theoremdvnff 25673 The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)) β†’ (𝑆 D𝑛 𝐹):β„•0⟢(β„‚ ↑pm dom 𝐹))
 
Theoremdvn0 25674 Zero times iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
((𝑆 βŠ† β„‚ ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)) β†’ ((𝑆 D𝑛 𝐹)β€˜0) = 𝐹)
 
Theoremdvnp1 25675 Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
((𝑆 βŠ† β„‚ ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆) ∧ 𝑁 ∈ β„•0) β†’ ((𝑆 D𝑛 𝐹)β€˜(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)β€˜π‘)))
 
Theoremdvn1 25676 One times iterated derivative. (Contributed by Mario Carneiro, 1-Jan-2017.)
((𝑆 βŠ† β„‚ ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)) β†’ ((𝑆 D𝑛 𝐹)β€˜1) = (𝑆 D 𝐹))
 
Theoremdvnf 25677 The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆) ∧ 𝑁 ∈ β„•0) β†’ ((𝑆 D𝑛 𝐹)β€˜π‘):dom ((𝑆 D𝑛 𝐹)β€˜π‘)βŸΆβ„‚)
 
Theoremdvnbss 25678 The set of N-times differentiable points is a subset of the domain of the function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆) ∧ 𝑁 ∈ β„•0) β†’ dom ((𝑆 D𝑛 𝐹)β€˜π‘) βŠ† dom 𝐹)
 
Theoremdvnadd 25679 The 𝑁-th derivative of the 𝑀-th derivative of 𝐹 is the same as the 𝑀 + 𝑁-th derivative of 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.)
(((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)) ∧ (𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0)) β†’ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)β€˜π‘€))β€˜π‘) = ((𝑆 D𝑛 𝐹)β€˜(𝑀 + 𝑁)))
 
Theoremdvn2bss 25680 An N-times differentiable point is an M-times differentiable point, if 𝑀 ≀ 𝑁. (Contributed by Mario Carneiro, 30-Dec-2016.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) β†’ dom ((𝑆 D𝑛 𝐹)β€˜π‘) βŠ† dom ((𝑆 D𝑛 𝐹)β€˜π‘€))
 
Theoremdvnres 25681 Multiple derivative version of dvres3a 25663. (Contributed by Mario Carneiro, 11-Feb-2015.)
(((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm β„‚) ∧ 𝑁 ∈ β„•0) ∧ dom ((β„‚ D𝑛 𝐹)β€˜π‘) = dom 𝐹) β†’ ((𝑆 D𝑛 (𝐹 β†Ύ 𝑆))β€˜π‘) = (((β„‚ D𝑛 𝐹)β€˜π‘) β†Ύ 𝑆))
 
Theoremcpnfval 25682* Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝑆 βŠ† β„‚ β†’ (𝓑Cπ‘›β€˜π‘†) = (𝑛 ∈ β„•0 ↦ {𝑓 ∈ (β„‚ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)β€˜π‘›) ∈ (dom 𝑓–cnβ†’β„‚)}))
 
Theoremfncpn 25683 The 𝓑C𝑛 object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝑆 βŠ† β„‚ β†’ (𝓑Cπ‘›β€˜π‘†) Fn β„•0)
 
Theoremelcpn 25684 Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
((𝑆 βŠ† β„‚ ∧ 𝑁 ∈ β„•0) β†’ (𝐹 ∈ ((𝓑Cπ‘›β€˜π‘†)β€˜π‘) ↔ (𝐹 ∈ (β„‚ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)β€˜π‘) ∈ (dom 𝐹–cnβ†’β„‚))))
 
Theoremcpnord 25685 𝓑C𝑛 conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝑀 ∈ β„•0 ∧ 𝑁 ∈ (β„€β‰₯β€˜π‘€)) β†’ ((𝓑Cπ‘›β€˜π‘†)β€˜π‘) βŠ† ((𝓑Cπ‘›β€˜π‘†)β€˜π‘€))
 
Theoremcpncn 25686 A 𝓑C𝑛 function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ ((𝓑Cπ‘›β€˜π‘†)β€˜π‘)) β†’ 𝐹 ∈ (dom 𝐹–cnβ†’β„‚))
 
Theoremcpnres 25687 The restriction of a 𝓑C𝑛 function is 𝓑C𝑛. (Contributed by Mario Carneiro, 11-Feb-2015.)
((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ ((𝓑Cπ‘›β€˜β„‚)β€˜π‘)) β†’ (𝐹 β†Ύ 𝑆) ∈ ((𝓑Cπ‘›β€˜π‘†)β€˜π‘))
 
Theoremdvaddbr 25688 The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd 25691. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Remove unnecessary hypotheses. (Revised by GG, 10-Apr-2025.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆβ„‚)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑆)    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐢(𝑆 D 𝐹)𝐾)    &   (πœ‘ β†’ 𝐢(𝑆 D 𝐺)𝐿)    &   π½ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ 𝐢(𝑆 D (𝐹 ∘f + 𝐺))(𝐾 + 𝐿))
 
Theoremdvmulbr 25689 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul 25692. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11192 and remove unnecessary hypotheses. (Revised by GG, 16-Mar-2025.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆβ„‚)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑆)    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐢(𝑆 D 𝐹)𝐾)    &   (πœ‘ β†’ 𝐢(𝑆 D 𝐺)𝐿)    &   π½ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ 𝐢(𝑆 D (𝐹 ∘f Β· 𝐺))((𝐾 Β· (πΊβ€˜πΆ)) + (𝐿 Β· (πΉβ€˜πΆ))))
 
TheoremdvmulbrOLD 25690 Obsolete version of dvmulbr 25689 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆβ„‚)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑆)    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝐢(𝑆 D 𝐹)𝐾)    &   (πœ‘ β†’ 𝐢(𝑆 D 𝐺)𝐿)    &   π½ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ 𝐢(𝑆 D (𝐹 ∘f Β· 𝐺))((𝐾 Β· (πΊβ€˜πΆ)) + (𝐿 Β· (πΉβ€˜πΆ))))
 
Theoremdvadd 25691 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddbr 25688. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆβ„‚)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑆)    &   (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐢 ∈ dom (𝑆 D 𝐹))    &   (πœ‘ β†’ 𝐢 ∈ dom (𝑆 D 𝐺))    β‡’   (πœ‘ β†’ ((𝑆 D (𝐹 ∘f + 𝐺))β€˜πΆ) = (((𝑆 D 𝐹)β€˜πΆ) + ((𝑆 D 𝐺)β€˜πΆ)))
 
Theoremdvmul 25692 The product rule for derivatives at a point. For the (more general) relation version, see dvmulbr 25689. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆβ„‚)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑆)    &   (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐢 ∈ dom (𝑆 D 𝐹))    &   (πœ‘ β†’ 𝐢 ∈ dom (𝑆 D 𝐺))    β‡’   (πœ‘ β†’ ((𝑆 D (𝐹 ∘f Β· 𝐺))β€˜πΆ) = ((((𝑆 D 𝐹)β€˜πΆ) Β· (πΊβ€˜πΆ)) + (((𝑆 D 𝐺)β€˜πΆ) Β· (πΉβ€˜πΆ))))
 
Theoremdvaddf 25693 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝐺:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ dom (𝑆 D 𝐹) = 𝑋)    &   (πœ‘ β†’ dom (𝑆 D 𝐺) = 𝑋)    β‡’   (πœ‘ β†’ (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)))
 
Theoremdvmulf 25694 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝐺:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ dom (𝑆 D 𝐹) = 𝑋)    &   (πœ‘ β†’ dom (𝑆 D 𝐺) = 𝑋)    β‡’   (πœ‘ β†’ (𝑆 D (𝐹 ∘f Β· 𝐺)) = (((𝑆 D 𝐹) ∘f Β· 𝐺) ∘f + ((𝑆 D 𝐺) ∘f Β· 𝐹)))
 
Theoremdvcmul 25695 The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐢 ∈ dom (𝑆 D 𝐹))    β‡’   (πœ‘ β†’ ((𝑆 D ((𝑆 Γ— {𝐴}) ∘f Β· 𝐹))β€˜πΆ) = (𝐴 Β· ((𝑆 D 𝐹)β€˜πΆ)))
 
Theoremdvcmulf 25696 The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ dom (𝑆 D 𝐹) = 𝑋)    β‡’   (πœ‘ β†’ (𝑆 D ((𝑆 Γ— {𝐴}) ∘f Β· 𝐹)) = ((𝑆 Γ— {𝐴}) ∘f Β· (𝑆 D 𝐹)))
 
Theoremdvcobr 25697 The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 25699. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11192 and remove unnecessary hypotheses. (Revised by GG, 16-Mar-2025.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆπ‘‹)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑇)    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝑇 βŠ† β„‚)    &   (πœ‘ β†’ (πΊβ€˜πΆ)(𝑆 D 𝐹)𝐾)    &   (πœ‘ β†’ 𝐢(𝑇 D 𝐺)𝐿)    &   π½ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ 𝐢(𝑇 D (𝐹 ∘ 𝐺))(𝐾 Β· 𝐿))
 
TheoremdvcobrOLD 25698 Obsolete version of dvcobr 25697 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆπ‘‹)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑇)    &   (πœ‘ β†’ 𝑆 βŠ† β„‚)    &   (πœ‘ β†’ 𝑇 βŠ† β„‚)    &   (πœ‘ β†’ (πΊβ€˜πΆ)(𝑆 D 𝐹)𝐾)    &   (πœ‘ β†’ 𝐢(𝑇 D 𝐺)𝐿)    &   π½ = (TopOpenβ€˜β„‚fld)    β‡’   (πœ‘ β†’ 𝐢(𝑇 D (𝐹 ∘ 𝐺))(𝐾 Β· 𝐿))
 
Theoremdvco 25699 The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr 25697. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆπ‘‹)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑇)    &   (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝑇 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ (πΊβ€˜πΆ) ∈ dom (𝑆 D 𝐹))    &   (πœ‘ β†’ 𝐢 ∈ dom (𝑇 D 𝐺))    β‡’   (πœ‘ β†’ ((𝑇 D (𝐹 ∘ 𝐺))β€˜πΆ) = (((𝑆 D 𝐹)β€˜(πΊβ€˜πΆ)) Β· ((𝑇 D 𝐺)β€˜πΆ)))
 
Theoremdvcof 25700 The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝑇 ∈ {ℝ, β„‚})    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„‚)    &   (πœ‘ β†’ 𝐺:π‘ŒβŸΆπ‘‹)    &   (πœ‘ β†’ dom (𝑆 D 𝐹) = 𝑋)    &   (πœ‘ β†’ dom (𝑇 D 𝐺) = π‘Œ)    β‡’   (πœ‘ β†’ (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f Β· (𝑇 D 𝐺)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-47939
  Copyright terms: Public domain < Previous  Next >