![]() |
Metamath
Proof Explorer Theorem List (p. 257 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ditgex 25601 | A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ β¨[π΄ β π΅]πΆ dπ₯ β V | ||
Theorem | ditg0 25602* | Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ β¨[π΄ β π΄]π΅ dπ₯ = 0 | ||
Theorem | cbvditg 25603* | Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π₯ = π¦ β πΆ = π·) & β’ β²π¦πΆ & β’ β²π₯π· β β’ β¨[π΄ β π΅]πΆ dπ₯ = β¨[π΄ β π΅]π· dπ¦ | ||
Theorem | cbvditgv 25604* | Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π₯ = π¦ β πΆ = π·) β β’ β¨[π΄ β π΅]πΆ dπ₯ = β¨[π΄ β π΅]π· dπ¦ | ||
Theorem | ditgpos 25605* | Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ (π β π΄ β€ π΅) β β’ (π β β¨[π΄ β π΅]πΆ dπ₯ = β«(π΄(,)π΅)πΆ dπ₯) | ||
Theorem | ditgneg 25606* | Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ (π β π΄ β€ π΅) & β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β β¨[π΅ β π΄]πΆ dπ₯ = -β«(π΄(,)π΅)πΆ dπ₯) | ||
Theorem | ditgcl 25607* | Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ ((π β§ π₯ β (π(,)π)) β πΆ β π) & β’ (π β (π₯ β (π(,)π) β¦ πΆ) β πΏ1) β β’ (π β β¨[π΄ β π΅]πΆ dπ₯ β β) | ||
Theorem | ditgswap 25608* | Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ ((π β§ π₯ β (π(,)π)) β πΆ β π) & β’ (π β (π₯ β (π(,)π) β¦ πΆ) β πΏ1) β β’ (π β β¨[π΅ β π΄]πΆ dπ₯ = -β¨[π΄ β π΅]πΆ dπ₯) | ||
Theorem | ditgsplitlem 25609* | Lemma for ditgsplit 25610. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ (π β πΆ β (π[,]π)) & β’ ((π β§ π₯ β (π(,)π)) β π· β π) & β’ (π β (π₯ β (π(,)π) β¦ π·) β πΏ1) & β’ ((π β§ π) β (π΄ β€ π΅ β§ π΅ β€ πΆ)) β β’ (((π β§ π) β§ π) β β¨[π΄ β πΆ]π· dπ₯ = (β¨[π΄ β π΅]π· dπ₯ + β¨[π΅ β πΆ]π· dπ₯)) | ||
Theorem | ditgsplit 25610* | This theorem is the raison d'Γͺtre for the directed integral, because unlike itgspliticc 25586, there is no constraint on the ordering of the points π΄, π΅, πΆ in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ (π β πΆ β (π[,]π)) & β’ ((π β§ π₯ β (π(,)π)) β π· β π) & β’ (π β (π₯ β (π(,)π) β¦ π·) β πΏ1) β β’ (π β β¨[π΄ β πΆ]π· dπ₯ = (β¨[π΄ β π΅]π· dπ₯ + β¨[π΅ β πΆ]π· dπ₯)) | ||
Syntax | climc 25611 | The limit operator. |
class limβ | ||
Syntax | cdv 25612 | The derivative operator. |
class D | ||
Syntax | cdvn 25613 | The π-th derivative operator. |
class Dπ | ||
Syntax | ccpn 25614 | The set of π-times continuously differentiable functions. |
class πCπ | ||
Definition | df-limc 25615* | Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) |
β’ limβ = (π β (β βpm β), π₯ β β β¦ {π¦ β£ [(TopOpenββfld) / π](π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯)}) | ||
Definition | df-dv 25616* | Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set π here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of β and is well-behaved when π contains no isolated points, we will restrict our attention to the cases π = β or π = β for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) |
β’ D = (π β π« β, π β (β βpm π ) β¦ βͺ π₯ β ((intβ((TopOpenββfld) βΎt π ))βdom π)({π₯} Γ ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯))) | ||
Definition | df-dvn 25617* | Define the π-th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ Dπ = (π β π« β, π β (β βpm π ) β¦ seq0(((π₯ β V β¦ (π D π₯)) β 1st ), (β0 Γ {π}))) | ||
Definition | df-cpn 25618* | Define the set of π-times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
β’ πCπ = (π β π« β β¦ (π₯ β β0 β¦ {π β (β βpm π ) β£ ((π Dπ π)βπ₯) β (dom πβcnββ)})) | ||
Theorem | reldv 25619 | The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.) |
β’ Rel (π D πΉ) | ||
Theorem | limcvallem 25620* | Lemma for ellimc 25622. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) & β’ πΎ = (TopOpenββfld) & β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) β β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) | ||
Theorem | limcfval 25621* | Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) & β’ πΎ = (TopOpenββfld) β β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β ((πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β§ (πΉ limβ π΅) β β)) | ||
Theorem | ellimc 25622* | Value of the limit predicate. πΆ is the limit of the function πΉ at π΅ if the function πΊ, formed by adding π΅ to the domain of πΉ and setting it to πΆ, is continuous at π΅. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) & β’ πΎ = (TopOpenββfld) & β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (πΆ β (πΉ limβ π΅) β πΊ β ((π½ CnP πΎ)βπ΅))) | ||
Theorem | limcrcl 25623 | Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (πΆ β (πΉ limβ π΅) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β)) | ||
Theorem | limccl 25624 | Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (πΉ limβ π΅) β β | ||
Theorem | limcdif 25625 | It suffices to consider functions which are not defined at π΅ to define the limit of a function. In particular, the value of the original function πΉ at π΅ does not affect the limit of πΉ. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) β β’ (π β (πΉ limβ π΅) = ((πΉ βΎ (π΄ β {π΅})) limβ π΅)) | ||
Theorem | ellimc2 25626* | Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ πΎ = (TopOpenββfld) β β’ (π β (πΆ β (πΉ limβ π΅) β (πΆ β β β§ βπ’ β πΎ (πΆ β π’ β βπ€ β πΎ (π΅ β π€ β§ (πΉ β (π€ β© (π΄ β {π΅}))) β π’))))) | ||
Theorem | limcnlp 25627 | If π΅ is not a limit point of the domain of the function πΉ, then every point is a limit of πΉ at π΅. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ πΎ = (TopOpenββfld) & β’ (π β Β¬ π΅ β ((limPtβπΎ)βπ΄)) β β’ (π β (πΉ limβ π΅) = β) | ||
Theorem | ellimc3 25628* | Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (πΆ β (πΉ limβ π΅) β (πΆ β β β§ βπ₯ β β+ βπ¦ β β+ βπ§ β π΄ ((π§ β π΅ β§ (absβ(π§ β π΅)) < π¦) β (absβ((πΉβπ§) β πΆ)) < π₯)))) | ||
Theorem | limcflflem 25629 | Lemma for limcflf 25630. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β ((limPtβπΎ)βπ΄)) & β’ πΎ = (TopOpenββfld) & β’ πΆ = (π΄ β {π΅}) & β’ πΏ = (((neiβπΎ)β{π΅}) βΎt πΆ) β β’ (π β πΏ β (FilβπΆ)) | ||
Theorem | limcflf 25630 | The limit operator can be expressed as a filter limit, from the filter of neighborhoods of π΅ restricted to π΄ β {π΅}, to the topology of the complex numbers. (If π΅ is not a limit point of π΄, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β ((limPtβπΎ)βπ΄)) & β’ πΎ = (TopOpenββfld) & β’ πΆ = (π΄ β {π΅}) & β’ πΏ = (((neiβπΎ)β{π΅}) βΎt πΆ) β β’ (π β (πΉ limβ π΅) = ((πΎ fLimf πΏ)β(πΉ βΎ πΆ))) | ||
Theorem | limcmo 25631* | If π΅ is a limit point of the domain of the function πΉ, then there is at most one limit value of πΉ at π΅. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β ((limPtβπΎ)βπ΄)) & β’ πΎ = (TopOpenββfld) β β’ (π β β*π₯ π₯ β (πΉ limβ π΅)) | ||
Theorem | limcmpt 25632* | Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ ((π β§ π§ β π΄) β π· β β) & β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) & β’ πΎ = (TopOpenββfld) β β’ (π β (πΆ β ((π§ β π΄ β¦ π·) limβ π΅) β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, π·)) β ((π½ CnP πΎ)βπ΅))) | ||
Theorem | limcmpt2 25633* | Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β π΄) & β’ ((π β§ (π§ β π΄ β§ π§ β π΅)) β π· β β) & β’ π½ = (πΎ βΎt π΄) & β’ πΎ = (TopOpenββfld) β β’ (π β (πΆ β ((π§ β (π΄ β {π΅}) β¦ π·) limβ π΅) β (π§ β π΄ β¦ if(π§ = π΅, πΆ, π·)) β ((π½ CnP πΎ)βπ΅))) | ||
Theorem | limcresi 25634 | Any limit of πΉ is also a limit of the restriction of πΉ. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (πΉ limβ π΅) β ((πΉ βΎ πΆ) limβ π΅) | ||
Theorem | limcres 25635 | If π΅ is an interior point of πΆ βͺ {π΅} relative to the domain π΄, then a limit point of πΉ βΎ πΆ extends to a limit of πΉ. (Contributed by Mario Carneiro, 27-Dec-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β πΆ β π΄) & β’ (π β π΄ β β) & β’ πΎ = (TopOpenββfld) & β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) & β’ (π β π΅ β ((intβπ½)β(πΆ βͺ {π΅}))) β β’ (π β ((πΉ βΎ πΆ) limβ π΅) = (πΉ limβ π΅)) | ||
Theorem | cnplimc 25636 | A function is continuous at π΅ iff its limit at π΅ equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ πΎ = (TopOpenββfld) & β’ π½ = (πΎ βΎt π΄) β β’ ((π΄ β β β§ π΅ β π΄) β (πΉ β ((π½ CnP πΎ)βπ΅) β (πΉ:π΄βΆβ β§ (πΉβπ΅) β (πΉ limβ π΅)))) | ||
Theorem | cnlimc 25637* | πΉ is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (π΄ β β β (πΉ β (π΄βcnββ) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯)))) | ||
Theorem | cnlimci 25638 | If πΉ is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (π β πΉ β (π΄βcnβπ·)) & β’ (π β π΅ β π΄) β β’ (π β (πΉβπ΅) β (πΉ limβ π΅)) | ||
Theorem | cnmptlimc 25639* | If πΉ is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (π β (π₯ β π΄ β¦ π) β (π΄βcnβπ·)) & β’ (π β π΅ β π΄) & β’ (π₯ = π΅ β π = π) β β’ (π β π β ((π₯ β π΄ β¦ π) limβ π΅)) | ||
Theorem | limccnp 25640 | If the limit of πΉ at π΅ is πΆ and πΊ is continuous at πΆ, then the limit of πΊ β πΉ at π΅ is πΊ(πΆ). (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ (π β πΉ:π΄βΆπ·) & β’ (π β π· β β) & β’ πΎ = (TopOpenββfld) & β’ π½ = (πΎ βΎt π·) & β’ (π β πΆ β (πΉ limβ π΅)) & β’ (π β πΊ β ((π½ CnP πΎ)βπΆ)) β β’ (π β (πΊβπΆ) β ((πΊ β πΉ) limβ π΅)) | ||
Theorem | limccnp2 25641* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ ((π β§ π₯ β π΄) β π β π) & β’ ((π β§ π₯ β π΄) β π β π) & β’ (π β π β β) & β’ (π β π β β) & β’ πΎ = (TopOpenββfld) & β’ π½ = ((πΎ Γt πΎ) βΎt (π Γ π)) & β’ (π β πΆ β ((π₯ β π΄ β¦ π ) limβ π΅)) & β’ (π β π· β ((π₯ β π΄ β¦ π) limβ π΅)) & β’ (π β π» β ((π½ CnP πΎ)ββ¨πΆ, π·β©)) β β’ (π β (πΆπ»π·) β ((π₯ β π΄ β¦ (π π»π)) limβ π΅)) | ||
Theorem | limcco 25642* | Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ ((π β§ (π₯ β π΄ β§ π β πΆ)) β π β π΅) & β’ ((π β§ π¦ β π΅) β π β β) & β’ (π β πΆ β ((π₯ β π΄ β¦ π ) limβ π)) & β’ (π β π· β ((π¦ β π΅ β¦ π) limβ πΆ)) & β’ (π¦ = π β π = π) & β’ ((π β§ (π₯ β π΄ β§ π = πΆ)) β π = π·) β β’ (π β π· β ((π₯ β π΄ β¦ π) limβ π)) | ||
Theorem | limciun 25643* | A point is a limit of πΉ on the finite union βͺ π₯ β π΄π΅(π₯) iff it is the limit of the restriction of πΉ to each π΅(π₯). (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π΄ β Fin) & β’ (π β βπ₯ β π΄ π΅ β β) & β’ (π β πΉ:βͺ π₯ β π΄ π΅βΆβ) & β’ (π β πΆ β β) β β’ (π β (πΉ limβ πΆ) = (β β© β© π₯ β π΄ ((πΉ βΎ π΅) limβ πΆ))) | ||
Theorem | limcun 25644 | A point is a limit of πΉ on π΄ βͺ π΅ iff it is the limit of the restriction of πΉ to π΄ and to π΅. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ:(π΄ βͺ π΅)βΆβ) β β’ (π β (πΉ limβ πΆ) = (((πΉ βΎ π΄) limβ πΆ) β© ((πΉ βΎ π΅) limβ πΆ))) | ||
Theorem | dvlem 25645 | Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (π β πΉ:π·βΆβ) & β’ (π β π· β β) & β’ (π β π΅ β π·) β β’ ((π β§ π΄ β (π· β {π΅})) β (((πΉβπ΄) β (πΉβπ΅)) / (π΄ β π΅)) β β) | ||
Theorem | dvfval 25646* | Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.) |
β’ π = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) β β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β ((π D πΉ) = βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β (π΄ β {π₯}) β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β§ (π D πΉ) β (((intβπ)βπ΄) Γ β))) | ||
Theorem | eldv 25647* | The differentiable predicate. A function πΉ is differentiable at π΅ with derivative πΆ iff πΉ is defined in a neighborhood of π΅ and the difference quotient has limit πΆ at π΅. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.) |
β’ π = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) & β’ πΊ = (π§ β (π΄ β {π΅}) β¦ (((πΉβπ§) β (πΉβπ΅)) / (π§ β π΅))) & β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) β β’ (π β (π΅(π D πΉ)πΆ β (π΅ β ((intβπ)βπ΄) β§ πΆ β (πΊ limβ π΅)))) | ||
Theorem | dvcl 25648 | The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) β β’ ((π β§ π΅(π D πΉ)πΆ) β πΆ β β) | ||
Theorem | dvbssntr 25649 | The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ π½ = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) β β’ (π β dom (π D πΉ) β ((intβπ½)βπ΄)) | ||
Theorem | dvbss 25650 | The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) β β’ (π β dom (π D πΉ) β π΄) | ||
Theorem | dvbsss 25651 | The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ dom (π D πΉ) β π | ||
Theorem | perfdvf 25652 | The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.) |
β’ πΎ = (TopOpenββfld) β β’ ((πΎ βΎt π) β Perf β (π D πΉ):dom (π D πΉ)βΆβ) | ||
Theorem | recnprss 25653 | Both β and β are subsets of β. (Contributed by Mario Carneiro, 10-Feb-2015.) |
β’ (π β {β, β} β π β β) | ||
Theorem | recnperf 25654 | Both β and β are perfect subsets of β. (Contributed by Mario Carneiro, 28-Dec-2016.) |
β’ πΎ = (TopOpenββfld) β β’ (π β {β, β} β (πΎ βΎt π) β Perf) | ||
Theorem | dvfg 25655 | Explicitly write out the functionality condition on derivative for π = β and β. (Contributed by Mario Carneiro, 9-Feb-2015.) |
β’ (π β {β, β} β (π D πΉ):dom (π D πΉ)βΆβ) | ||
Theorem | dvf 25656 | The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (β D πΉ):dom (β D πΉ)βΆβ | ||
Theorem | dvfcn 25657 | The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) |
β’ (β D πΉ):dom (β D πΉ)βΆβ | ||
Theorem | dvreslem 25658* | Lemma for dvres 25660. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022.) |
β’ πΎ = (TopOpenββfld) & β’ π = (πΎ βΎt π) & β’ πΊ = (π§ β (π΄ β {π₯}) β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) & β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π¦ β β) β β’ (π β (π₯(π D (πΉ βΎ π΅))π¦ β (π₯ β ((intβπ)βπ΅) β§ π₯(π D πΉ)π¦))) | ||
Theorem | dvres2lem 25659* | Lemma for dvres2 25661. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.) |
β’ πΎ = (TopOpenββfld) & β’ π = (πΎ βΎt π) & β’ πΊ = (π§ β (π΄ β {π₯}) β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) & β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π¦ β β) & β’ (π β π₯(π D πΉ)π¦) & β’ (π β π₯ β π΅) β β’ (π β π₯(π΅ D (πΉ βΎ π΅))π¦) | ||
Theorem | dvres 25660 | Restriction of a derivative. Note that our definition of derivative df-dv 25616 would still make sense if we demanded that π₯ be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point π₯ when restricted to different subsets containing π₯; a classic example is the absolute value function restricted to [0, +β) and (-β, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ πΎ = (TopOpenββfld) & β’ π = (πΎ βΎt π) β β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β (π D (πΉ βΎ π΅)) = ((π D πΉ) βΎ ((intβπ)βπ΅))) | ||
Theorem | dvres2 25661 | Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25660, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like β(π₯) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.) |
β’ (((π β β β§ πΉ:π΄βΆβ) β§ (π΄ β π β§ π΅ β π)) β ((π D πΉ) βΎ π΅) β (π΅ D (πΉ βΎ π΅))) | ||
Theorem | dvres3 25662 | Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015.) |
β’ (((π β {β, β} β§ πΉ:π΄βΆβ) β§ (π΄ β β β§ π β dom (β D πΉ))) β (π D (πΉ βΎ π)) = ((β D πΉ) βΎ π)) | ||
Theorem | dvres3a 25663 | Restriction of a complex differentiable function to the reals. This version of dvres3 25662 assumes that πΉ is differentiable on its domain, but does not require πΉ to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ π½ = (TopOpenββfld) β β’ (((π β {β, β} β§ πΉ:π΄βΆβ) β§ (π΄ β π½ β§ dom (β D πΉ) = π΄)) β (π D (πΉ βΎ π)) = ((β D πΉ) βΎ π)) | ||
Theorem | dvidlem 25664* | Lemma for dvid 25667 and dvconst 25666. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (π β πΉ:ββΆβ) & β’ ((π β§ (π₯ β β β§ π§ β β β§ π§ β π₯)) β (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯)) = π΅) & β’ π΅ β β β β’ (π β (β D πΉ) = (β Γ {π΅})) | ||
Theorem | dvmptresicc 25665* | Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ πΉ = (π₯ β β β¦ π΄) & β’ ((π β§ π₯ β β) β π΄ β β) & β’ (π β (β D πΉ) = (π₯ β β β¦ π΅)) & β’ ((π β§ π₯ β β) β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) β β’ (π β (β D (π₯ β (πΆ[,]π·) β¦ π΄)) = (π₯ β (πΆ(,)π·) β¦ π΅)) | ||
Theorem | dvconst 25666 | Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (π΄ β β β (β D (β Γ {π΄})) = (β Γ {0})) | ||
Theorem | dvid 25667 | Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
β’ (β D ( I βΎ β)) = (β Γ {1}) | ||
Theorem | dvcnp 25668* | The difference quotient is continuous at π΅ when the original function is differentiable at π΅. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
β’ π½ = (πΎ βΎt π΄) & β’ πΎ = (TopOpenββfld) & β’ πΊ = (π§ β π΄ β¦ if(π§ = π΅, ((π D πΉ)βπ΅), (((πΉβπ§) β (πΉβπ΅)) / (π§ β π΅)))) β β’ (((π β {β, β} β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π΅ β dom (π D πΉ)) β πΊ β ((π½ CnP πΎ)βπ΅)) | ||
Theorem | dvcnp2 25669 | A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11192. (Revised by GG, 16-Mar-2025.) |
β’ π½ = (πΎ βΎt π΄) & β’ πΎ = (TopOpenββfld) β β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π΅ β dom (π D πΉ)) β πΉ β ((π½ CnP πΎ)βπ΅)) | ||
Theorem | dvcnp2OLD 25670 | Obsolete version of dvcnp2 25669 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π½ = (πΎ βΎt π΄) & β’ πΎ = (TopOpenββfld) β β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π΅ β dom (π D πΉ)) β πΉ β ((π½ CnP πΎ)βπ΅)) | ||
Theorem | dvcn 25671 | A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.) |
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β πΉ β (π΄βcnββ)) | ||
Theorem | dvnfval 25672* | Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ πΊ = (π₯ β V β¦ (π D π₯)) β β’ ((π β β β§ πΉ β (β βpm π)) β (π Dπ πΉ) = seq0((πΊ β 1st ), (β0 Γ {πΉ}))) | ||
Theorem | dvnff 25673 | The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β {β, β} β§ πΉ β (β βpm π)) β (π Dπ πΉ):β0βΆ(β βpm dom πΉ)) | ||
Theorem | dvn0 25674 | Zero times iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β β β§ πΉ β (β βpm π)) β ((π Dπ πΉ)β0) = πΉ) | ||
Theorem | dvnp1 25675 | Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β β β§ πΉ β (β βpm π) β§ π β β0) β ((π Dπ πΉ)β(π + 1)) = (π D ((π Dπ πΉ)βπ))) | ||
Theorem | dvn1 25676 | One times iterated derivative. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ ((π β β β§ πΉ β (β βpm π)) β ((π Dπ πΉ)β1) = (π D πΉ)) | ||
Theorem | dvnf 25677 | The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) | ||
Theorem | dvnbss 25678 | The set of N-times differentiable points is a subset of the domain of the function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β dom ((π Dπ πΉ)βπ) β dom πΉ) | ||
Theorem | dvnadd 25679 | The π-th derivative of the π-th derivative of πΉ is the same as the π + π-th derivative of πΉ. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ (((π β {β, β} β§ πΉ β (β βpm π)) β§ (π β β0 β§ π β β0)) β ((π Dπ ((π Dπ πΉ)βπ))βπ) = ((π Dπ πΉ)β(π + π))) | ||
Theorem | dvn2bss 25680 | An N-times differentiable point is an M-times differentiable point, if π β€ π. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β (0...π)) β dom ((π Dπ πΉ)βπ) β dom ((π Dπ πΉ)βπ)) | ||
Theorem | dvnres 25681 | Multiple derivative version of dvres3a 25663. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ (((π β {β, β} β§ πΉ β (β βpm β) β§ π β β0) β§ dom ((β Dπ πΉ)βπ) = dom πΉ) β ((π Dπ (πΉ βΎ π))βπ) = (((β Dπ πΉ)βπ) βΎ π)) | ||
Theorem | cpnfval 25682* | Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β β β (πCπβπ) = (π β β0 β¦ {π β (β βpm π) β£ ((π Dπ π)βπ) β (dom πβcnββ)})) | ||
Theorem | fncpn 25683 | The πCπ object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β β β (πCπβπ) Fn β0) | ||
Theorem | elcpn 25684 | Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β β β§ π β β0) β (πΉ β ((πCπβπ)βπ) β (πΉ β (β βpm π) β§ ((π Dπ πΉ)βπ) β (dom πΉβcnββ)))) | ||
Theorem | cpnord 25685 | πCπ conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β {β, β} β§ π β β0 β§ π β (β€β₯βπ)) β ((πCπβπ)βπ) β ((πCπβπ)βπ)) | ||
Theorem | cpncn 25686 | A πCπ function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β {β, β} β§ πΉ β ((πCπβπ)βπ)) β πΉ β (dom πΉβcnββ)) | ||
Theorem | cpnres 25687 | The restriction of a πCπ function is πCπ. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β {β, β} β§ πΉ β ((πCπββ)βπ)) β (πΉ βΎ π) β ((πCπβπ)βπ)) | ||
Theorem | dvaddbr 25688 | The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd 25691. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Remove unnecessary hypotheses. (Revised by GG, 10-Apr-2025.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) & β’ (π β π β β) & β’ (π β πΆ(π D πΉ)πΎ) & β’ (π β πΆ(π D πΊ)πΏ) & β’ π½ = (TopOpenββfld) β β’ (π β πΆ(π D (πΉ βf + πΊ))(πΎ + πΏ)) | ||
Theorem | dvmulbr 25689 | The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul 25692. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11192 and remove unnecessary hypotheses. (Revised by GG, 16-Mar-2025.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) & β’ (π β π β β) & β’ (π β πΆ(π D πΉ)πΎ) & β’ (π β πΆ(π D πΊ)πΏ) & β’ π½ = (TopOpenββfld) β β’ (π β πΆ(π D (πΉ βf Β· πΊ))((πΎ Β· (πΊβπΆ)) + (πΏ Β· (πΉβπΆ)))) | ||
Theorem | dvmulbrOLD 25690 | Obsolete version of dvmulbr 25689 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) & β’ (π β π β β) & β’ (π β πΆ(π D πΉ)πΎ) & β’ (π β πΆ(π D πΊ)πΏ) & β’ π½ = (TopOpenββfld) β β’ (π β πΆ(π D (πΉ βf Β· πΊ))((πΎ Β· (πΊβπΆ)) + (πΏ Β· (πΉβπΆ)))) | ||
Theorem | dvadd 25691 | The sum rule for derivatives at a point. For the (more general) relation version, see dvaddbr 25688. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) & β’ (π β π β {β, β}) & β’ (π β πΆ β dom (π D πΉ)) & β’ (π β πΆ β dom (π D πΊ)) β β’ (π β ((π D (πΉ βf + πΊ))βπΆ) = (((π D πΉ)βπΆ) + ((π D πΊ)βπΆ))) | ||
Theorem | dvmul 25692 | The product rule for derivatives at a point. For the (more general) relation version, see dvmulbr 25689. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) & β’ (π β π β {β, β}) & β’ (π β πΆ β dom (π D πΉ)) & β’ (π β πΆ β dom (π D πΊ)) β β’ (π β ((π D (πΉ βf Β· πΊ))βπΆ) = ((((π D πΉ)βπΆ) Β· (πΊβπΆ)) + (((π D πΊ)βπΆ) Β· (πΉβπΆ)))) | ||
Theorem | dvaddf 25693 | The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β dom (π D πΉ) = π) & β’ (π β dom (π D πΊ) = π) β β’ (π β (π D (πΉ βf + πΊ)) = ((π D πΉ) βf + (π D πΊ))) | ||
Theorem | dvmulf 25694 | The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β dom (π D πΉ) = π) & β’ (π β dom (π D πΊ) = π) β β’ (π β (π D (πΉ βf Β· πΊ)) = (((π D πΉ) βf Β· πΊ) βf + ((π D πΊ) βf Β· πΉ))) | ||
Theorem | dvcmul 25695 | The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:πβΆβ) & β’ (π β π΄ β β) & β’ (π β π β π) & β’ (π β πΆ β dom (π D πΉ)) β β’ (π β ((π D ((π Γ {π΄}) βf Β· πΉ))βπΆ) = (π΄ Β· ((π D πΉ)βπΆ))) | ||
Theorem | dvcmulf 25696 | The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:πβΆβ) & β’ (π β π΄ β β) & β’ (π β dom (π D πΉ) = π) β β’ (π β (π D ((π Γ {π΄}) βf Β· πΉ)) = ((π Γ {π΄}) βf Β· (π D πΉ))) | ||
Theorem | dvcobr 25697 | The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 25699. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11192 and remove unnecessary hypotheses. (Revised by GG, 16-Mar-2025.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆπ) & β’ (π β π β π) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πΊβπΆ)(π D πΉ)πΎ) & β’ (π β πΆ(π D πΊ)πΏ) & β’ π½ = (TopOpenββfld) β β’ (π β πΆ(π D (πΉ β πΊ))(πΎ Β· πΏ)) | ||
Theorem | dvcobrOLD 25698 | Obsolete version of dvcobr 25697 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆπ) & β’ (π β π β π) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πΊβπΆ)(π D πΉ)πΎ) & β’ (π β πΆ(π D πΊ)πΏ) & β’ π½ = (TopOpenββfld) β β’ (π β πΆ(π D (πΉ β πΊ))(πΎ Β· πΏ)) | ||
Theorem | dvco 25699 | The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr 25697. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β π) & β’ (π β πΊ:πβΆπ) & β’ (π β π β π) & β’ (π β π β {β, β}) & β’ (π β π β {β, β}) & β’ (π β (πΊβπΆ) β dom (π D πΉ)) & β’ (π β πΆ β dom (π D πΊ)) β β’ (π β ((π D (πΉ β πΊ))βπΆ) = (((π D πΉ)β(πΊβπΆ)) Β· ((π D πΊ)βπΆ))) | ||
Theorem | dvcof 25700 | The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
β’ (π β π β {β, β}) & β’ (π β π β {β, β}) & β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆπ) & β’ (π β dom (π D πΉ) = π) & β’ (π β dom (π D πΊ) = π) β β’ (π β (π D (πΉ β πΊ)) = (((π D πΉ) β πΊ) βf Β· (π D πΊ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |