Detailed syntax breakdown of Definition df-r1p
Step | Hyp | Ref
| Expression |
1 | | cr1p 25300 |
. 2
class
rem1p |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3431 |
. . 3
class
V |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1537 |
. . . . . 6
class 𝑟 |
6 | | cpl1 21355 |
. . . . . 6
class
Poly1 |
7 | 5, 6 | cfv 6435 |
. . . . 5
class
(Poly1‘𝑟) |
8 | | cbs 16919 |
. . . . 5
class
Base |
9 | 7, 8 | cfv 6435 |
. . . 4
class
(Base‘(Poly1‘𝑟)) |
10 | | vf |
. . . . 5
setvar 𝑓 |
11 | | vg |
. . . . 5
setvar 𝑔 |
12 | 4 | cv 1537 |
. . . . 5
class 𝑏 |
13 | 10 | cv 1537 |
. . . . . 6
class 𝑓 |
14 | 11 | cv 1537 |
. . . . . . . 8
class 𝑔 |
15 | | cq1p 25299 |
. . . . . . . . 9
class
quot1p |
16 | 5, 15 | cfv 6435 |
. . . . . . . 8
class
(quot1p‘𝑟) |
17 | 13, 14, 16 | co 7282 |
. . . . . . 7
class (𝑓(quot1p‘𝑟)𝑔) |
18 | | cmulr 16970 |
. . . . . . . 8
class
.r |
19 | 7, 18 | cfv 6435 |
. . . . . . 7
class
(.r‘(Poly1‘𝑟)) |
20 | 17, 14, 19 | co 7282 |
. . . . . 6
class ((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔) |
21 | | csg 18586 |
. . . . . . 7
class
-g |
22 | 7, 21 | cfv 6435 |
. . . . . 6
class
(-g‘(Poly1‘𝑟)) |
23 | 13, 20, 22 | co 7282 |
. . . . 5
class (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)) |
24 | 10, 11, 12, 12, 23 | cmpo 7284 |
. . . 4
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔))) |
25 | 4, 9, 24 | csb 3831 |
. . 3
class
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔))) |
26 | 2, 3, 25 | cmpt 5156 |
. 2
class (𝑟 ∈ V ↦
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) |
27 | 1, 26 | wceq 1538 |
1
wff
rem1p = (𝑟 ∈ V ↦
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) |