Detailed syntax breakdown of Definition df-r1p
| Step | Hyp | Ref
| Expression |
| 1 | | cr1p 26168 |
. 2
class
rem1p |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑟 |
| 6 | | cpl1 22178 |
. . . . . 6
class
Poly1 |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Poly1‘𝑟) |
| 8 | | cbs 17247 |
. . . . 5
class
Base |
| 9 | 7, 8 | cfv 6561 |
. . . 4
class
(Base‘(Poly1‘𝑟)) |
| 10 | | vf |
. . . . 5
setvar 𝑓 |
| 11 | | vg |
. . . . 5
setvar 𝑔 |
| 12 | 4 | cv 1539 |
. . . . 5
class 𝑏 |
| 13 | 10 | cv 1539 |
. . . . . 6
class 𝑓 |
| 14 | 11 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 15 | | cq1p 26167 |
. . . . . . . . 9
class
quot1p |
| 16 | 5, 15 | cfv 6561 |
. . . . . . . 8
class
(quot1p‘𝑟) |
| 17 | 13, 14, 16 | co 7431 |
. . . . . . 7
class (𝑓(quot1p‘𝑟)𝑔) |
| 18 | | cmulr 17298 |
. . . . . . . 8
class
.r |
| 19 | 7, 18 | cfv 6561 |
. . . . . . 7
class
(.r‘(Poly1‘𝑟)) |
| 20 | 17, 14, 19 | co 7431 |
. . . . . 6
class ((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔) |
| 21 | | csg 18953 |
. . . . . . 7
class
-g |
| 22 | 7, 21 | cfv 6561 |
. . . . . 6
class
(-g‘(Poly1‘𝑟)) |
| 23 | 13, 20, 22 | co 7431 |
. . . . 5
class (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)) |
| 24 | 10, 11, 12, 12, 23 | cmpo 7433 |
. . . 4
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔))) |
| 25 | 4, 9, 24 | csb 3899 |
. . 3
class
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔))) |
| 26 | 2, 3, 25 | cmpt 5225 |
. 2
class (𝑟 ∈ V ↦
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) |
| 27 | 1, 26 | wceq 1540 |
1
wff
rem1p = (𝑟 ∈ V ↦
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) |