Detailed syntax breakdown of Definition df-itg2
| Step | Hyp | Ref
| Expression |
| 1 | | citg2 25517 |
. 2
class
∫2 |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | cc0 11068 |
. . . . 5
class
0 |
| 4 | | cpnf 11205 |
. . . . 5
class
+∞ |
| 5 | | cicc 13309 |
. . . . 5
class
[,] |
| 6 | 3, 4, 5 | co 7387 |
. . . 4
class
(0[,]+∞) |
| 7 | | cr 11067 |
. . . 4
class
ℝ |
| 8 | | cmap 8799 |
. . . 4
class
↑m |
| 9 | 6, 7, 8 | co 7387 |
. . 3
class
((0[,]+∞) ↑m ℝ) |
| 10 | | vg |
. . . . . . . . 9
setvar 𝑔 |
| 11 | 10 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 12 | 2 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 13 | | cle 11209 |
. . . . . . . . 9
class
≤ |
| 14 | 13 | cofr 7652 |
. . . . . . . 8
class
∘r ≤ |
| 15 | 11, 12, 14 | wbr 5107 |
. . . . . . 7
wff 𝑔 ∘r ≤ 𝑓 |
| 16 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 17 | 16 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 18 | | citg1 25516 |
. . . . . . . . 9
class
∫1 |
| 19 | 11, 18 | cfv 6511 |
. . . . . . . 8
class
(∫1‘𝑔) |
| 20 | 17, 19 | wceq 1540 |
. . . . . . 7
wff 𝑥 =
(∫1‘𝑔) |
| 21 | 15, 20 | wa 395 |
. . . . . 6
wff (𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) |
| 22 | 18 | cdm 5638 |
. . . . . 6
class dom
∫1 |
| 23 | 21, 10, 22 | wrex 3053 |
. . . . 5
wff
∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ 𝑓
∧ 𝑥 =
(∫1‘𝑔)) |
| 24 | 23, 16 | cab 2707 |
. . . 4
class {𝑥 ∣ ∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ 𝑓
∧ 𝑥 =
(∫1‘𝑔))} |
| 25 | | cxr 11207 |
. . . 4
class
ℝ* |
| 26 | | clt 11208 |
. . . 4
class
< |
| 27 | 24, 25, 26 | csup 9391 |
. . 3
class
sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ 𝑓
∧ 𝑥 =
(∫1‘𝑔))}, ℝ*, <
) |
| 28 | 2, 9, 27 | cmpt 5188 |
. 2
class (𝑓 ∈ ((0[,]+∞)
↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 29 | 1, 28 | wceq 1540 |
1
wff
∫2 = (𝑓 ∈ ((0[,]+∞) ↑m
ℝ) ↦ sup({𝑥
∣ ∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ 𝑓
∧ 𝑥 =
(∫1‘𝑔))}, ℝ*, <
)) |