Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2val | Structured version Visualization version GIF version |
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2val | ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12875 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | supex 9222 | . 2 ⊢ sup(𝐿, ℝ*, < ) ∈ V |
3 | reex 10962 | . 2 ⊢ ℝ ∈ V | |
4 | ovex 7308 | . 2 ⊢ (0[,]+∞) ∈ V | |
5 | breq2 5078 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑔 ∘r ≤ 𝑓 ↔ 𝑔 ∘r ≤ 𝐹)) | |
6 | 5 | anbi1d 630 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
7 | 6 | rexbidv 3226 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
8 | 7 | abbidv 2807 | . . . 4 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
9 | itg2val.1 | . . . 4 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
10 | 8, 9 | eqtr4di 2796 | . . 3 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = 𝐿) |
11 | 10 | supeq1d 9205 | . 2 ⊢ (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < )) |
12 | df-itg2 24785 | . 2 ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | |
13 | 2, 3, 4, 11, 12 | fvmptmap 8669 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 {cab 2715 ∃wrex 3065 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘r cofr 7532 supcsup 9199 ℝcr 10870 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,]cicc 13082 ∫1citg1 24779 ∫2citg2 24780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-itg2 24785 |
This theorem is referenced by: itg2cl 24897 itg2ub 24898 itg2leub 24899 itg2addnclem 35828 |
Copyright terms: Public domain | W3C validator |