MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2val Structured version   Visualization version   GIF version

Theorem itg2val 25635
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2val (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
Distinct variable group:   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2val
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xrltso 13107 . . 3 < Or ℝ*
21supex 9421 . 2 sup(𝐿, ℝ*, < ) ∈ V
3 reex 11165 . 2 ℝ ∈ V
4 ovex 7422 . 2 (0[,]+∞) ∈ V
5 breq2 5113 . . . . . . 7 (𝑓 = 𝐹 → (𝑔r𝑓𝑔r𝐹))
65anbi1d 631 . . . . . 6 (𝑓 = 𝐹 → ((𝑔r𝑓𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑥 = (∫1𝑔))))
76rexbidv 3158 . . . . 5 (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))))
87abbidv 2796 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
9 itg2val.1 . . . 4 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
108, 9eqtr4di 2783 . . 3 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))} = 𝐿)
1110supeq1d 9403 . 2 (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < ))
12 df-itg2 25528 . 2 2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 8856 1 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  {cab 2708  wrex 3054   class class class wbr 5109  dom cdm 5640  wf 6509  cfv 6513  (class class class)co 7389  r cofr 7654  supcsup 9397  cr 11073  0cc0 11074  +∞cpnf 11211  *cxr 11213   < clt 11214  cle 11215  [,]cicc 13315  1citg1 25522  2citg2 25523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-pre-lttri 11148  ax-pre-lttrn 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-itg2 25528
This theorem is referenced by:  itg2cl  25639  itg2ub  25640  itg2leub  25641  itg2addnclem  37660
  Copyright terms: Public domain W3C validator