![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2val | Structured version Visualization version GIF version |
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2val | ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 13123 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | supex 9457 | . 2 ⊢ sup(𝐿, ℝ*, < ) ∈ V |
3 | reex 11200 | . 2 ⊢ ℝ ∈ V | |
4 | ovex 7437 | . 2 ⊢ (0[,]+∞) ∈ V | |
5 | breq2 5145 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑔 ∘r ≤ 𝑓 ↔ 𝑔 ∘r ≤ 𝐹)) | |
6 | 5 | anbi1d 629 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
7 | 6 | rexbidv 3172 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
8 | 7 | abbidv 2795 | . . . 4 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
9 | itg2val.1 | . . . 4 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
10 | 8, 9 | eqtr4di 2784 | . . 3 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = 𝐿) |
11 | 10 | supeq1d 9440 | . 2 ⊢ (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < )) |
12 | df-itg2 25501 | . 2 ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | |
13 | 2, 3, 4, 11, 12 | fvmptmap 8874 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 {cab 2703 ∃wrex 3064 class class class wbr 5141 dom cdm 5669 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 ∘r cofr 7665 supcsup 9434 ℝcr 11108 0cc0 11109 +∞cpnf 11246 ℝ*cxr 11248 < clt 11249 ≤ cle 11250 [,]cicc 13330 ∫1citg1 25495 ∫2citg2 25496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-itg2 25501 |
This theorem is referenced by: itg2cl 25613 itg2ub 25614 itg2leub 25615 itg2addnclem 37050 |
Copyright terms: Public domain | W3C validator |