MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2val Structured version   Visualization version   GIF version

Theorem itg2val 25645
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2val (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
Distinct variable group:   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2val
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xrltso 13061 . . 3 < Or ℝ*
21supex 9373 . 2 sup(𝐿, ℝ*, < ) ∈ V
3 reex 11119 . 2 ℝ ∈ V
4 ovex 7386 . 2 (0[,]+∞) ∈ V
5 breq2 5099 . . . . . . 7 (𝑓 = 𝐹 → (𝑔r𝑓𝑔r𝐹))
65anbi1d 631 . . . . . 6 (𝑓 = 𝐹 → ((𝑔r𝑓𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑥 = (∫1𝑔))))
76rexbidv 3153 . . . . 5 (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))))
87abbidv 2795 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
9 itg2val.1 . . . 4 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
108, 9eqtr4di 2782 . . 3 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))} = 𝐿)
1110supeq1d 9355 . 2 (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < ))
12 df-itg2 25538 . 2 2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 8815 1 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  {cab 2707  wrex 3053   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  r cofr 7616  supcsup 9349  cr 11027  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  [,]cicc 13269  1citg1 25532  2citg2 25533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-itg2 25538
This theorem is referenced by:  itg2cl  25649  itg2ub  25650  itg2leub  25651  itg2addnclem  37650
  Copyright terms: Public domain W3C validator