![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2val | Structured version Visualization version GIF version |
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2val | ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 13117 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | supex 9455 | . 2 ⊢ sup(𝐿, ℝ*, < ) ∈ V |
3 | reex 11198 | . 2 ⊢ ℝ ∈ V | |
4 | ovex 7439 | . 2 ⊢ (0[,]+∞) ∈ V | |
5 | breq2 5152 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑔 ∘r ≤ 𝑓 ↔ 𝑔 ∘r ≤ 𝐹)) | |
6 | 5 | anbi1d 631 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
7 | 6 | rexbidv 3179 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
8 | 7 | abbidv 2802 | . . . 4 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
9 | itg2val.1 | . . . 4 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
10 | 8, 9 | eqtr4di 2791 | . . 3 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = 𝐿) |
11 | 10 | supeq1d 9438 | . 2 ⊢ (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < )) |
12 | df-itg2 25130 | . 2 ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | |
13 | 2, 3, 4, 11, 12 | fvmptmap 8872 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 {cab 2710 ∃wrex 3071 class class class wbr 5148 dom cdm 5676 ⟶wf 6537 ‘cfv 6541 (class class class)co 7406 ∘r cofr 7666 supcsup 9432 ℝcr 11106 0cc0 11107 +∞cpnf 11242 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 [,]cicc 13324 ∫1citg1 25124 ∫2citg2 25125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-itg2 25130 |
This theorem is referenced by: itg2cl 25242 itg2ub 25243 itg2leub 25244 itg2addnclem 36528 |
Copyright terms: Public domain | W3C validator |