MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2val Structured version   Visualization version   GIF version

Theorem itg2val 25238
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2val (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
Distinct variable group:   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2val
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xrltso 13117 . . 3 < Or ℝ*
21supex 9455 . 2 sup(𝐿, ℝ*, < ) ∈ V
3 reex 11198 . 2 ℝ ∈ V
4 ovex 7439 . 2 (0[,]+∞) ∈ V
5 breq2 5152 . . . . . . 7 (𝑓 = 𝐹 → (𝑔r𝑓𝑔r𝐹))
65anbi1d 631 . . . . . 6 (𝑓 = 𝐹 → ((𝑔r𝑓𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑥 = (∫1𝑔))))
76rexbidv 3179 . . . . 5 (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))))
87abbidv 2802 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
9 itg2val.1 . . . 4 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
108, 9eqtr4di 2791 . . 3 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))} = 𝐿)
1110supeq1d 9438 . 2 (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < ))
12 df-itg2 25130 . 2 2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 8872 1 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  {cab 2710  wrex 3071   class class class wbr 5148  dom cdm 5676  wf 6537  cfv 6541  (class class class)co 7406  r cofr 7666  supcsup 9432  cr 11106  0cc0 11107  +∞cpnf 11242  *cxr 11244   < clt 11245  cle 11246  [,]cicc 13324  1citg1 25124  2citg2 25125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-itg2 25130
This theorem is referenced by:  itg2cl  25242  itg2ub  25243  itg2leub  25244  itg2addnclem  36528
  Copyright terms: Public domain W3C validator