| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2val | Structured version Visualization version GIF version | ||
| Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2val | ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13107 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | supex 9421 | . 2 ⊢ sup(𝐿, ℝ*, < ) ∈ V |
| 3 | reex 11165 | . 2 ⊢ ℝ ∈ V | |
| 4 | ovex 7422 | . 2 ⊢ (0[,]+∞) ∈ V | |
| 5 | breq2 5113 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑔 ∘r ≤ 𝑓 ↔ 𝑔 ∘r ≤ 𝐹)) | |
| 6 | 5 | anbi1d 631 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
| 7 | 6 | rexbidv 3158 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)))) |
| 8 | 7 | abbidv 2796 | . . . 4 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
| 9 | itg2val.1 | . . . 4 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 10 | 8, 9 | eqtr4di 2783 | . . 3 ⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))} = 𝐿) |
| 11 | 10 | supeq1d 9403 | . 2 ⊢ (𝑓 = 𝐹 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) = sup(𝐿, ℝ*, < )) |
| 12 | df-itg2 25528 | . 2 ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | |
| 13 | 2, 3, 4, 11, 12 | fvmptmap 8856 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cab 2708 ∃wrex 3054 class class class wbr 5109 dom cdm 5640 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ∘r cofr 7654 supcsup 9397 ℝcr 11073 0cc0 11074 +∞cpnf 11211 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 [,]cicc 13315 ∫1citg1 25522 ∫2citg2 25523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-pre-lttri 11148 ax-pre-lttrn 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-itg2 25528 |
| This theorem is referenced by: itg2cl 25639 itg2ub 25640 itg2leub 25641 itg2addnclem 37660 |
| Copyright terms: Public domain | W3C validator |